In recent years, knowledge extraction from data has become increasingly popular, with many numerical forecasting models, mainly falling into two major categorieschemical transport models (CTMs) and conventional statistical methods. However, due to data and model variability, data-driven knowledge extraction from highdimensional, multifaceted data in such applications require generalisations of global to regional or local conditions. Typically, generalisation is achieved via mapping global conditions to local ecosystems and human habitats which amounts to tracking and monitoring environmental dynamics in various geographical areas and their regional and global implications on human livelihood. Statistical downscaling techniques have been widely used to extract high-resolution information from regional-scale variables produced by CTMs in climate model. Conventional applications of these methods are predominantly dimensional reduction in nature, designed to reduce spatial dimension of gridded model outputs without loss of essential spatial information. Their downside is twofold-complete dependence on unlabelled design matrix and reliance on underlying distributional assumptions. We propose a novel statistical downscaling framework for dealing with data and model variability. Its power derives from training and testing multiple models on multiple samples, narrowing down global environmental phenomena to regional discordance through dimensional reduction and visualisation. Hourly ground-level ozone observations were obtained from various environmental stations maintained by the US Environmental Protection Agency, covering the summer period (June-August 2005). Regional patterns of ozone are related to local observations via repeated runs and performance assessment of multiple versions of empirical orthogonal functions or principal components and principal fitted com
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.