Retinal vessel segmentation is an active research area in medical image processing. Several research outcomes on retinal vessel segmentation have emerged in recent years. Each method has its own pros and cons, either in the vessel detection stage or in its extraction. Based on a detailed empirical investigation, a novel retinal vessel extraction architecture is proposed, which makes use of a couple of existing algorithms. In the proposed algorithm, vessel detection is carried out using a cumulative distribution function-based thresholding scheme. The resultant vessel intensities are extracted based on the hysteresis thresholding scheme. Experiments are carried out with retinal images from DRIVE and STARE databases. The results in terms of Sensitivity, Specificity, and Accuracy are compared with five standard methods. The proposed method outperforms all methods in terms of Sensitivity and Accuracy for the DRIVE data set, whereas for STARE, the performance is comparable with the best method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.