35 years since identification of HIV as the causative agent of AIDS, and 35 million deaths associated with this disease, significant effort is now directed towards the development of potential cures. Current anti-retroviral (ART) therapies for HIV/AIDS can suppress virus replication to undetectable levels, and infected individuals can live symptom free so long as treatment is maintained. However, removal of therapy allows rapid re-emergence of virus from a highly stable reservoir of latently infected cells that exist as a barrier to elimination of the infection with current ART. Prospects of a cure for HIV infection are significantly encouraged by two serendipitous cases where individuals have entered remission following stem cell transplantation from compatible HIV-resistant donors. However, development of a routine cure that could become available to millions of infected individuals will require a means of specifically purging cells harboring latent HIV, preventing replication of latent provirus, or destruction of provirus genomes by gene editing. Elimination of latently infected cells will require a means of exposing this population, which may involve identification of a natural specific biomarker or therapeutic intervention to force their exposure by reactivation of virus expression. Accordingly, the proposed "Shock and Kill" strategy involves treatment with latency-reversing agents (LRA) to induce HIV provirus expression thus exposing these cells to killing by cellular immunity or apoptosis. Current efforts to enable this strategy are directed at developing improved combinations of LRA to produce broad and robust induction of HIV provirus and enhancing the elimination of cells where replication has been reactivated by targeted immune modulation. Alternative strategies may involve preventing re-emergence virus from latently infected cells by "Lock and Block" intervention, where transcription of provirus is inhibited to prevent virus spread or disruption of the HIV provirus genome by genome editing.
Bacterial vaginosis (BV) is associated with an increased rate of sexual transmission of human immunodeficiency virus (HIV) type 1, and Gardnerella vaginalis is frequently isolated from the genital tracts of women with BV. G. vaginalis lysates were found to significantly stimulate HIV expression in monocytoid cells. Stimulation was significantly higher when lysates were heated at 100 degrees C for 5 min but was reduced by treatment with lysozyme or protease. G. vaginalis lysates also activated HIV expression in certain T cell lines. G. vaginalis lysates activated HIV long-terminal repeat transcription in HIV-infected cells and increased NF-kappaB binding activity, indicating an effect by G. vaginalis on HIV transcription. The activation of HIV production by G. vaginalis suggests that genital tract infection with G. vaginalis increases the risk of HIV transmission by increasing HIV expression in the genital tract. This may explain, at least in part, the increased rate of HIV transmission in women with BV.
Antimicrobial resistance in carbapenem non-susceptible Acinetobacter baumannii (CNSAb) is a major public health concern globally. This study determined the antibiotic resistance and molecular epidemiology of CNSAb isolates from a referral burn center in Tehran, Iran. Sixty-nine CNSAb isolates were tested for susceptibility to antimicrobial agents using the E test methodology. Multiple locus variable number tandem repeat analysis (MLVA), Multilocus sequence typing (MLST) and multiplex PCR were performed. PCR assays tested for ambler classes A, B, and D β-lactamases. Detection of ISAba1, characterization of integrons, and biofilm formation were investigated. Fifty-three (77%) isolates revealed XDR phenotypes. High prevalence of blaOXA-23-like (88%) and blaPER-1 (54%) were detected. ISAba1 was detected upstream of blaADC, blaOXA-23-like and blaOXA51-like genes in, 97, 42, and 26% of isolates, respectively. Thirty-one (45%) isolates were assigned to international clone (IC) variants. MLVA identified 56 distinct types with six clusters and 53 singleton genotypes. Forty previously known MLST sequence types forming 5 clonal complexes were identified. The Class 1 integron (class 1 integrons) gene was identified in 84% of the isolates. The most prevalent (33%) cassette combination was aacA4-catB8-aadA1. The IC variants were predominant in the A. baumannii lineage with the ability to form strong biofilms. The XDR-CNSAb from burned patients in Iran is resistant to various antimicrobials, including tigecycline. This study shows wide genetic diversity in CNSAb. Integrating the new Iranian A. baumannii IC variants into the epidemiologic clonal and susceptibility profile databases can help effective global control measures against the XDR-CNSAb pandemic.
ObjectivesAcinetobacter baumannii is a bacterium responsible for health care-associated infections, and it frequently develops multiple drug resistance (MDR). The prevalence of antibiotic-resistant A. baumannii in Iran has increased, and this may cause significant clinical problems. Therefore, in order to elucidate the development of antibiotic resistance, we performed a systematic review of the literature published on antibiotic-resistant A. baumannii reported in Iran.MethodsThirty-six publications that met the criteria for inclusion were reviewed from an initial 87 papers. Selected papers published between 2008 and September 2014, were categorized on the basis of the sample collecting year been between 2001 and 2013.ResultsAnalysis of data revealed that, in general, there was an increase in antimicrobial resistance. During the initial time point of these studies (2001–2007) there was a high rate of resistance to all antibiotics, with the exception of carbapenems, lipopeptides, and aminoglycosides that had a low resistance rate in comparison with the others. Also, the resistance rate was increased in one group of these three antimicrobial groups from 2010 to 2013. In particular, there was an increase in resistance to carbapenems (imipenem and meropenem) from 2010–2011 and 2012–2013, whereas no significant change in the resistance rate of the other two antimicrobial groups (lipopeptides and aminoglycosides) during the study time was observed, although we did observe certain trends in amikacin (aminoglycoside group antibiotic) between 2011–2012 and 2012–2013.ConclusionThese findings indicate that antimicrobial resistance of A. baumannii in Iran has increased, which may very well affect the antimicrobial resistance of this organism worldwide. Based on these results, novel prevention and treatment strategies against A. baumannii infections are warranted. Furthermore, these data may assist in revising treatment guidelines and regional policies in care units to slow the emergence of antimicrobial resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.