Sleep stage classification is one of the most critical steps in effective diagnosis and the treatment of sleep-related disorders. Visual inspection undertaken by sleep experts is a time-consuming and burdensome task. A computer-assisted sleep stage classification system is thus essential for both sleep-related disorders diagnosis and sleep monitoring. In this paper, we propose a system to classify the wake and sleep stages with high rates of sensitivity and specificity. The EEG signals of 25 subjects with suspected sleep-disordered breathing, and the EEG signals of 20 healthy subjects from three data sets are used. Every EEG epoch is decomposed into eight subband epochs each of which has a frequency band pertaining to one EEG rhythm (i.e., delta, theta, alpha, sigma, beta 1, beta 2, gamma 1, or gamma 2). Thirteen features are extracted from each subband epoch. Therefore, 104 features are totally obtained for every EEG epoch. The Kruskal-Wallis test is used to examine the significance of the features. Non-significant features are discarded. The minimal-redundancy-maximal-relevance feature selection algorithm is then used to eliminate redundant and irrelevant features. The features selected are classified by a random forest classifier. To set the system parameters and to evaluate the system performance, nested 5-fold cross-validation and subject cross-validation are performed. The performance of our proposed system is evaluated for different multi-class classification problems. The minimum overall accuracy rates obtained are 95.31% and 86.64% for nested 5-fold and subject cross-validation, respectively. The system performance is promising in terms of the accuracy, sensitivity, and specificity rates compared with the ones of the state-of-the-art systems. The proposed system can be used in health care applications with the aim of improving sleep stage classification.
Fractal Theory has been used for computer graphics, image compression and different fields of pattern recognition. In this paper we simplified a general purpose two-dimensional fractal coder used for image compression. Since in the case of on-line signature recognition, we loose gray levels, contrast and luminosity information, we do NOT employ these parameters in the fractal coder. Instead, we focused on geometrical relationship between the range block and its best domain block. Then, some features were extracted directly by the proposed one dimensional fractal coder. We will show their usefulness in the application of Persian on-line signature recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.