Detecting communities in complex networks is of paramount importance, and its wide range of real-life applications in various areas has caused a lot of attention to be paid to it, and many efforts have been made to have efficient and accurate algorithms for this purpose. In this paper, we proposed a non-cooperative game theoretic-based algorithm that is able to detect overlapping communities. In this algorithm, nodes are regarded as players, and communities are assumed to be groups of players with similar strategies. Our two-phase algorithm detects communities and the overlapping nodes in separate phases that, while increasing the accuracy, especially in detecting overlapping nodes, brings about higher algorithm speed. Moreover, there is no need for setting parameters regarding the size or number of communities, and the absence of any stochastic process caused this algorithm to be stable. By appropriately adjusting stop criteria, our algorithm can be categorized among those with linear time complexity, making it highly scalable for large networks. Experiments on synthetic and real-world networks demonstrate our algorithm’s good performance compared to similar algorithms in terms of detected overlapping nodes, detected communities size distribution, modularity, and normalized mutual information.
Detecting communities in complex networks is of paramount importance, and its wide range of real-life applications in various areas has caused a lot of attention to be paid to it, and many efforts have been made to have efficient and accurate algorithms for this purpose. In this paper, we proposed a non-cooperative game theoretic-based algorithm that is able to detect overlapping communities. In this algorithm, nodes are regarded as players, and communities are assumed to be groups of players with similar strategies. Our two-phase algorithm detects communities and the overlapping nodes in separate phases that, while increasing the accuracy, especially in detecting overlapping nodes, brings about higher algorithm speed. Moreover, there is no need for setting parameters regarding the size or number of communities, and the absence of any stochastic process caused this algorithm to be stable. By appropriately adjusting stop criteria, our algorithm can be categorized among those with linear time complexity, making it highly scalable for large networks. Experiments on synthetic and real-world networks demonstrate our algorithm's good performance compared to similar algorithms in terms of detected overlapping nodes, detected communities size distribution, modularity, and normalized mutual information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.