The dangerous dose-dependent side effects of anticancer agents triggered the finding of new approaches for elevated chemotherapy efficacy. This study investigated the potential application of nanostructured lipid careers (NLCs) in increasing vitamin D (VitD) effectiveness in breast cancer cell (MCF-7) in concurrent administration with doxorubicin (Dox). VitD-loaded NLCs were characterized by particle size, zeta potential, Fourier transform infrared spectroscopy, and scanning electron microscope. Cytotoxicity and molecular effects of formulation were evaluated by MTT, DAPI staining, flow cytometry, and real-time quantitative PCR assays. The formulation revealed mean particle size of 87±5 nm with a polydispersity index of 0.24 confirmed by SEM images. The IC values for VitD and Dox were 1.3 ± 0.04 and 0.65 ± 0.05 µM, respectively. VitD-loaded NLCs decreased the percentage of cell proliferation from 49 ± 7.2% to 37 ± 5.1% (P < 0.05). Cotreatment of the cells with VitD-loaded NLCs and Dox caused over a twofold increase in the percentage of apoptosis (P < 0.05). Gene expression profile demonstrated a significant decrease in antiapoptotic factor survivin along with increase in proapoptotic factor Bax mRNA levels. Overall, our results introduced the NLC technology as a novel strategy to elevate the efficacy of chemotherapeutics in breast cancer.
Transient Receptor Potential Melastatin 8 (TRPM8) from the melastatin TRP channel subfamily is a non-selective Ca2+-permeable ion channel with multimodal gating which can be activated by low temperatures and cooling compounds, such as menthol and icilin. Different conditions such as neuropathic pain, cancer, overactive bladder syndrome, migraine, and chronic cough have been linked to the TRPM8 mode of action. Despite the several potent natural and synthetic inhibitors of TRPM8 that have been identified, none of them have been approved for clinical use. The aim of this study was to discover novel blocking TRPM8 agents using automated patch clamp electrophysiology combined with a ligand-based virtual screening based on the SwissSimilarity platform. Among the compounds we have tested, nebivolol and carvedilol exhibited the greatest inhibitory effect, with an IC50 of 0.97 ± 0.15 µM and 9.1 ± 0.6 µM, respectively. This study therefore provides possible candidates for future drug repurposing and suggests promising lead compounds for further optimization as inhibitors of the TRPM8 ion channel.
In the present work, applying the whole-cell patch-clamp technique in voltage clamp mode, we have investigated the effects of different drugs, such as riluzole, Psora-4 and Tram-34, on the potassium currents in four human lymphoma cell lines. We focused on outward currents mediated by two potassium channels (Kv1.3 and KCa3.1), which are known to play a key physiological role in lymphoid cells. The currents were evoked by voltage ramps ranging from -120 mV to +40 mV and the conductance of the two potassium channels was measured between +20 mV and +40 mV, both in the absence and in the presence of the specific blockers Psora-4 (Kv1.3; 1 µM) and Tram-34 (KCa3.1; 1 µM). The effect of the latter was tested after KCa3.1 channels were activated by riluzole 10 µM. Taken together, these data could be useful as an indication of the functional characteristics of the potassium channels in human lymphomas and represent a starting point for the study of potassium conductance in cellular models of these tumors.
The polymorphism rs10490924 (A69S) in the age-related maculopathy susceptibility 2 (ARMS2) gene is highly associated with age-related macular degeneration, which is the leading cause of blindness among the elderly population. The ARMS2 gene encodes a putative small (11kDa) protein, which the function and localization of the ARMS2 protein remain under debate. For a better understanding of functional impacts of the A69S mutation, we performed a detailed analysis of the ARMS2 sequence with a broad set of bioinformatics tools. In silico analysis was followed to predict the tertiary structure, putative binding site regions, and binding site residues. Also, the effects of this mutation on protein stability, aggregation propensity, and homodimerization were analyzed. Next, a molecular dynamic simulation was carried out to understand the dynamic behavior of wild-type, A69S, and phosphorylated A69S structures. The results showed alterations in the putative post-translational modification sites on the ARMS2 protein, due to the mutation. Furthermore, the stability of protein and putative homodimer conformations were affected by the mutation. Molecular dynamic simulation results revealed that the A69S mutation enhances the rigidity of the ARMS2 structure and residue serine at position 69 is buried and may not be phosphorylated; however, phosphorylated serine enhances the flexibility of the ARMS2 structure. In conclusion, our study provides new insights into the deleterious effects of the A69S mutation on the ARMS2 structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.