This paper presents the experimental investigation to enhance the mechanical properties of Polymer Modified Concrete (PMC) incorporating Styrene Butadiene Rubber (SBR) and describes the potential of using PMC as a structural material. PMC has been used for many years as an over layer in the bridges deck or for the repairing the defected concrete structures subjected to marine environment. But, because of low compressive strength due to foaming phenomenon, PMC has not been considered as a structural concrete. In this study, a range of investigations including sensitivity of PMC to water cement ratio, the effect of SBR proportion on compressive strength and modulus of rupture, selection of the proper antifoaming agent, the effect of various curing methods on compressive strength, proper mix design of PMC to achieve medium to high compressive strength are carried out. Also, the instructions for casting PMC are composed which can be stated as a standard for mixing and curing procedure of PMC. Results show that increasing the proportion of latex in PMC causes the strength reduction. But, using appropriate antifoaming agent (defoamer) and proper curing method, the mechanical properties can be recovered remarkably.
Degradation of RC (reinforced concrete) in maritime structures has become a worldwide problem due to its excessive costs of maintenance, repair and replacement in addition to its environmental impacts and safety issues. Degradation of both concrete and steel which is the main reason of reduction in the service life of RC structures strongly depends on the diffusion process of moisture and aggressive species. In this paper, the major and popular mathematical models of diffusion process in concrete are surveyed and investigated. Predominantly in these models, the coefficient of chloride diffusion into the concrete is assumed to be constant. Whereas, experimental records indicate that diffusion coefficient is a function of time. Subsequently, data analysis and comparisons between the existing analytical models for predicting the diffusion coefficient with the existing experimental database are carried out in this study. Clearly, these comparisons reveal that there are gaps between the existing mathematical models and previously recorded experimental results. Perhaps, these gaps may be interpreted as influence of the other affecting parameters on the diffusion coefficient such as temperature, aggregate size and relative humidity in addition to the water cement ratio. Accordingly, the existing mathematical models are not adequate enough to predict the diffusion coefficient precisely and further studies need to be performed.
Durability of the concrete depends on the mass transfer properties of the concrete. This paper investigates the chloride diffusion in polymer-concrete composites subjected to pure diffusion process for 720 days. Chloride profiles for all types of concrete were obtained and then chloride diffusion coefficients were calculated. Extensive experimental program showed a significant enhancement of concrete durability by means of polymer-concrete composites. Reducing numbers and size of cracks and blocking the interconnected pores in concrete can enhance the durability of concrete. The results of this experimental study revealed that utilising both synthetic fibres and polymers in concrete improved durability of the concrete significantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.