Image reconstruction using minimal measured information has been a long-standing open problem in many computational imaging approaches, in particular in-line holography. Many solutions are devised based on compressive sensing (CS) techniques with handcrafted image priors or supervised deep neural networks (DNN). However, the limited performance of CS methods due to lack of information about the image priors and the requirement of an enormous amount of per-sample-type training resources for DNNs has posed new challenges over the primary problem. In this study, we propose a single-shot lensless in-line holographic reconstruction method using an untrained deep neural network which is incorporated with a physical image formation algorithm. We demonstrate that by modifying a deep decoder network with simple regularizers, a Gabor hologram can be inversely reconstructed via a minimization process that is constrained by a deep image prior. The outcoming model allows to accurately recover the phase and amplitude images without any training dataset, excess measurements, or specific assumptions about the object’s or the measurement’s characteristics.
Image reconstruction using minimal measured information has been a long-standing open problem in many computational imaging approaches, in particular in-line holography. Many solutions are devised based on compressive sensing (CS) techniques with handcrafted image priors or supervised Deep Neural Networks (DNN). However, the limited performance of CS methods due to lack of information about the image priors and the requirement of an enormous amount of per-sample-type training resources for DNNs has posed new challenges over the primary problem. In this study, we propose a single-shot lensless in-line holographic reconstruction method using an untrained deep neural network which is incorporated with a physical image formation algorithm. We demonstrate that by modifying a deep decoder network with simple regularizers, a Gabor hologram can be inversely reconstructed via a minimization process that is constrained by a deep image prior. The outcoming model allows to accurately recover the phase and amplitude images without any training dataset, excess measurements, or specific assumptions about the object’s or the measurement’s characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.