Background-Accurate knowledge of the human atrial fibrous structure is paramount in understanding the mechanisms of atrial electric function in health and disease. Thus far, such knowledge has been acquired from destructive sectioning, and there is a paucity of data about atrial fiber architecture variability in the human population. Methods and Results-In this study, we have developed a customized 3-dimensional diffusion tensor magnetic resonance imaging sequence on a clinical scanner that makes it possible to image an entire intact human heart specimen ex vivo at submillimeter resolution. The data from 8 human atrial specimens obtained with this technique present complete maps of the fibrous organization of the human atria. The findings demonstrate that the main features of atrial anatomy are mostly preserved across subjects although the exact location and orientation of atrial bundles vary. Using the full tractography data, we were able to cluster, visualize, and characterize the distinct major bundles in the human atria. Furthermore, quantitative characterization of the fiber angles across the atrial wall revealed that the transmural fiber angle distribution is heterogeneous throughout different regions of the atria. Conclusions-The application of submillimeter diffusion tensor magnetic resonance imaging provides an unprecedented level of information on both human atrial structure, as well as its intersubject variability. The high resolution and fidelity of this data could enhance our understanding of structural contributions to atrial rhythm and pump disorders and lead to improvements in their targeted treatment. (Circ Arrhythm Electrophysiol. 2016;9:e004133.
BACKGROUND Left atrial flutter (LAFL) occurs in patients after atrial fibrillation ablation. Identification of optimal ablation targets to terminate LAFL remains challenging. OBJECTIVE The purpose of this study was to use patient-specific models to simulate LAFL and predict optimal ablation targets using a novel approach based on flow network theory. METHODS Late gadolinium-enhanced cardiac magnetic resonance scans from 10 patients with LAFL were used to construct atrial models incorporating fibrosis by investigators blinded to procedural findings. Rapid pacing was applied in silico to induce LAFL. In each LAFL, we represented reentrant wave propagation as an electric flow network and identified the “minimum cut” (MC), which was the smallest amount of tissue that separated the flow into 2 discontinuous components. In silico ablation was applied at MCs, and targets were compared to those that terminated LAFL during catheter ablation. RESULTS Patient-specific atrial models were successfully generated from patient scans. LAFL was induced in 7 of 10 models. Ablation of MCs terminated LAFL in 4 models and produced new, slower LAFL morphologies in the other 3. For the latter cases, flow analysis was repeated to identify MCs of emergent LAFLs. Ablation of these MCs terminated emergent LAFLs. The MC-based ablation lesions in simulations were similar in length and location to ablation targets that terminated LAFL during catheter ablation for these 7 patients. CONCLUSION Personalized atrial simulations can predict ablation targets for LAFL. These simulations provide a powerful tool for planning ablation procedures and may reduce procedural times and complications.
Atrial anisotropy affects electrical propagation patterns, anchor locations of atrial reentrant drivers, and atrial mechanics. However, patient-specific atrial fibre fields and anisotropy measurements are not currently available, and consequently assigning fibre fields to atrial models is challenging. We aimed to construct an atrial fibre atlas from a high-resolution DTMRI dataset that optimally reproduces electrophysiology simulation predictions corresponding to patient-specific fibre fields, and to develop a methodology for automatically assigning fibres to patient-specific anatomies. We extended an atrial coordinate system to map the pulmonary veins, vena cava and appendages to standardised positions in the coordinate system corresponding to the average location across the anatomies. We then expressed each fibre field in this atrial coordinate system and calculated an average fibre field. To assess the effects of fibre field on patient-specific modelling predictions, we calculated paced activation time maps and electrical driver locations during AF. In total, 756 activation time maps were calculated (7 anatomies with 9 fibre maps and 2 pacing locations, for the endocardial, epicardial and bilayer surface models of the LA and RA). Patient-specific fibre fields had a relatively small effect on average paced activation maps (range of mean local activation time difference for LA fields: 2.67–3.60 ms, and for RA fields: 2.29–3.44 ms), but had a larger effect on maximum LAT differences (range for LA 12.7–16.6%; range for RA 11.9–15.0%). A total of 126 phase singularity density maps were calculated (7 anatomies with 9 fibre maps for the LA and RA bilayer models). The fibre field corresponding to anatomy 1 had the highest median PS density map correlation coefficient for LA bilayer simulations (0.44 compared to the other correlations, ranging from 0.14 to 0.39), while the average fibre field had the highest correlation for the RA bilayer simulations (0.61 compared to the other correlations, ranging from 0.37 to 0.56). For sinus rhythm simulations, average activation time is robust to fibre field direction; however, maximum differences can still be significant. Patient specific fibres are more important for arrhythmia simulations, particularly in the left atrium. We propose using the fibre field corresponding to DTMRI dataset 1 for LA simulations, and the average fibre field for RA simulations as these optimally predicted arrhythmia properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.