It has been proven that vehicle emissions such as oxides of nitrogen (NOx) are negatively affecting the health of human beings as well as the environment. In addition, it was recently highlighted that air pollution may result in people being more vulnerable to the deadly COVID-19 virus. The use of biofuels such as E5 and E10 as alternatives of gasoline fuel have been recommended by different researchers. In this paper, the impacts of port injection of water to a spark ignition engine fueled by gasoline, E5 and E10 on its performance and NOx production have been investigated. The experimental work was undertaken using a KIA Cerato engine and the results were used to validate an AVL BOOST model. To develop the numerical analysis, design of experiment (DOE) method was employed. The results showed that by increasing the ethanol fraction in gasoline/ethanol blend, the brake specific fuel consumption (BSFC) improved between 2.3% and 4.5%. However, the level of NOx increased between 22% to 48%. With port injection of water up to 8%, there was up to 1% increase in engine power whereas NOx and BSFC were reduced by 8% and 1%, respectively. The impacts of simultaneous changing of the start of combustion (SOC) and water injection rate on engine power and NOx production was also investigated. It was found that the NOx concentration is very sensitive to SOC variation.
Number of hybrid vehicles has increased around the world significantly. Automotive industry is utilizing the hybridization of the powertrain system to achieve better fuel economic and emissions reduction. One of the options recently considered in research for hybridization and downsizing of vehicles is to employ waste heat recovery systems. In this paper, the addition of a turbo-compound system with an air Brayton cycle (ABC) to a naturally aspirated engine was studied in AVL BOOST software. In addition, a supercharger was modeled to charge extra air into the engine and ABC. The engine was first validated against the experimental data prior to turbo-compounding. The energy and exergy analysis was performed to understand the effects of the proposed design at engine rated speed. Results showed that between 16 and 18% increase in engine mechanical power can be achieved by adding turbo-compressor. Furthermore, the recommended ABC system can recover up to 1.1 kW extra electrical power from the engine exhaust energy. The energy and exergy efficiencies were both improved slightly by turbo-compounding and BSFC reduced by nearly 1% with the proposed system. Furthermore, installing the proposed system resulted in increase in backpressure up to approximately 23.8 kPa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.