Pivotal to successful mammalian reproduction is the ability of a developing embryo to implant to the uterine wall and establish a nutrient supply via placentation. Herein, we have examined the potential epigenetic regulation of human trophoblastic cell migration and invasion by use of the choriocarcinoma cell line, BeWo. Treatment of BeWo cells with a DNA methyltransferase inhibitor, 5'-aza-2'-deoxycytidine (AZA), resulted in conversion of cell morphology to a nonmigratory phenotype. This was exemplified by the ability of AZA to prevent BeWo cell migration in wound healing and transwell migration assays. AZA consequently inhibited BeWo cell invasion through reconstituted basement membrane. Examination of components of the adherens junction complex pivotal for determination of cell phenotype revealed that AZA specifically increased the mRNA level of E-cadherin and plakoglobin (gamma-catenin), but not alpha-catenin and beta-catenin. AZA also increased the gene promoter activity of both plakoglobin and E-cadherin. Protein levels of both plakoglobin and E-cadherin were increased by AZA, and AZA enhanced their localization to sites of intercellular contact. Forced expression of plakoglobin and E-cadherin abrogated BeWo cell migration, indicative that repression of these genes was required for BeWo cell migration. Small interfering RNA-mediated depletion of the individual DNA methyltransferase (DNMT) molecules did not affect plakoglobin and E-cadherin promoter activity or BeWo cell migration. However, increases in plakoglobin and E-cadherin promoter activity and inhibition of BeWo cell migration was achieved with small interfering RNA-mediated depletion of both DNMT-3a and DNMT-3b. Epigenetic regulation of plakoglobin and E-cadherin is therefore pivotal for appropriate trophoblastic invasion in vitro.
Key to the success of human reproduction is the capacity of an embryo to attach and implant into the endometrial wall after which a nutrient supply is established through placentation. Herein, we have examined the potential epigenetic regulation of uterine receptivity by use of the receptive RL95-2 and nonreceptive AN3-CA endometrial epithelial carcinoma cell lines. Using an in vitro model of embryo implantation, we demonstrate that inhibition of DNA methylation by 5'-aza-2'-deoxycytidine (AZA), resulted in the nonreceptive AN3-CA cell line becoming receptive to BeWo cell spheroid attachment. Examination of components of the adherens junction complex revealed that AZA specifically increased the expression of E-cadherin and plakoglobin at the mRNA and protein levels in AN3-CA cells, and E-cadherin protein expression was found to localize to sites of intercellular contact. Forced expression of E-cadherin in AN3-CA cells significantly enhanced receptivity. Small interfering RNA (siRNA)-mediated depletion of the individual DNA methyltransferase (DNMT) molecules did not induce E-cadherin expression in AN3-CA cells; however, concomitant siRNA-mediated depletion of both DNMT3A and DNMT3B induced the expression of E-cadherin. Furthermore, E-cadherin expression was significantly increased after the concomitant siRNA-mediated depletion of DNMT-1, -3A, and -3B in AN3-CA cells. Therefore, we have provided evidence that E-cadherin plays an important role in uterine receptivity and that E-cadherin expression is epigenetically regulated in AN3-CA cells, suppressed by the combined actions of DNMT-1, -3A, and -3B.
Directed by microarray analyses, we report that autocrine human growth hormone (hGH) increased the mRNA and protein expression of DNA methyltransferase 1 (DNMT1), DNMT3A and DNMT3B in mammary carcinoma cells. Autocrine hGH stimulation of DNMT3A and DNMT3B expression was mediated by JAK2 and Src kinases, and treatment of mammary carcinoma cells with the DNMT inhibitor, 5 0 -aza-2 0 -deoxycytidine (AZA), abrogated autocrine hGH-stimulated cellular proliferation, apoptosis and anchorage-independent growth. AZA reversed the epitheliomesenchymal transition of mammary carcinoma cells induced by autocrine hGH, to an epithelioid morphology and abrogated cell migration stimulated by autocrine hGH. Autocrine hGH-stimulated hypermethylation of the first exon of the PLAKOGLOBIN gene and AZA abrogated the ability of autocrine hGH to repress plakoglobin gene transcription. Small interfering RNA (siRNA)-mediated depletion of the individual DNMT molecules did not release autocrine hGH repression of PLAKOGLOBIN promoter activity nor did individual DNMT depletion affect autocrine hGH-stimulated migration. However, concomitant siRNA-mediated depletion of both DNMT3A and DNMT3B abrogated hypermethylation of the PLAKO-GLOBIN gene stimulated by autocrine hGH and subsequent repression of plakoglobin gene transcription and increased cell migration. Thus, the autocrine hGHstimulated increases in DNMT3A and DNMT3B expression mediate repression of plakoglobin gene transcription by direct hypermethylation of its promoter and consequent phenotypic conversion of mammary carcinoma cells. Autocrine hGH, therefore, utilizes DNA methylation as a mechanism to exert its oncogenic effects in mammary carcinoma cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.