Droplet microfluidic was devoted to design and fabricate robust devices in the field of biosensing, tissue engineering, drug delivery, cell encapsulation, cell isolation, and lab-on-a-chip. Chitosan was widely used for different biomedical applications because of its unique characteristics such as antibacterial bioactivities, immune-enhancing influences, and anticancer bioactivities. In this research, a model is used for investigating the formation and size of composite droplets in a microfluidic device. The role of the velocity flow ratio in the composite droplet characteristics such as the generation rate and composite droplet size is described. According to the results, a desirable protocol is developed to control the properties of the composite droplets and to compare the size and rate of the composite droplets in a micro device. Furthermore, the level set laminar two-phase flow approach is exploited for studying the composite droplet-breaking procedure. An experimental procedure is used for validation of the simulation process. Various sizes and geometries of the composite droplets are fabricated to depict a potential in biomedical applications such as bioimaging, biosensing, tissue engineering, drug delivery, cell encapsulation, cancer cell isolation, and lab-on-a-chip.
Droplet microfluidic has been established to synthesize and functionalize micro/nanoparticles for drug delivery and screening, biosensing, cell/tissue engineering, lab-on-a-chip, and organ-on-a-chip have attracted much attention in chemical and biomedical engineering. Chitosan (CS) has been suggested for different biomedical applications due to its unique characteristics, such as antibacterial bioactivities, immune-enhancing influences, and anticancer bioactivities. The simulation results exhibited an alternative for attaining visions in this complex method. In this regard, the role of the flow rate ratio on the CS droplet features, including the generation rate and droplet size, were thoroughly described. Based on the results, an appropriate protocol was advanced for controlling the CS droplet properties for comparing their properties, such as the rate and size of the CS droplets in the microchip. Also, a level set (LS) laminar two-phase flow system was utilized to study the CS droplet-breaking process in the Flow Focused-based microchip. The outcomes demonstrated that different sizes and geometries of CS droplets could be established via varying the several parameters that validated addressing the different challenges for several purposes like drug delivery (the droplets with smaller sizes), tissue engineering, and cell encapsulation (the droplets with larger sizes), lab-on-a-chip, organ-on-a-chip, biosensing and bioimaging (the droplets with different sizes). An experimental study was added to confirm the simulation results. A drug delivery application was established to verify the claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.