Osteofibrous dysplasia-like adamantinoma is a rare, intermediate grade primary bone tumour of unknown aetiology, which typically involve mid-tibia diaphyseal region. We present a case which was initially suspected as metastasis as patient had underlying colonic cancer. Biopsy was taken twice for confirmatory diagnosis. Patient had an atypical imaging presentation of OFD-like adamantinoma, as the age of the patient and radiographical presentation were more of a classic adamantinoma. The ability to recognize the pattern and distribution and keeping it as a differential is important. MRI findings would be non-specific, but useful in term of locoregional staging. Even though histopathological examination provides definite diagnosis, it may sometimes yield false negative. Bone scan can be useful in detecting primary and metastatic osteoblastic bone tumour. Imaging findings and its closest differentials were discussed.
BackgroundGene regulatory network (GRN) inference can now take advantage of powerful machine learning algorithms to predict the entire landscape of gene-to-gene interactions with the potential to complement traditional experimental methods in building gene networks. However, the dynamical nature of embryonic development -- representing the time-dependent interactions between thousands of transcription factors, signaling molecules, and effector genes -- is one of the most challenging arenas for GRN prediction. ResultsIn this work, we show that successful GRN predictions for developmental systems from gene expression data alone can be obtained with the Priors Enriched Absent Knowledge (PEAK) network inference algorithm. PEAK is a noise-robust method that models gene expression dynamics via ordinary differential equations and selects the best network based on information-theoretic criteria coupled with the machine learning algorithm Elastic net. We test our GRN prediction methodology using two gene expression data sets for the purple sea urchin (S. purpuratus) and cross-check our results against existing GRN models that have been constructed and validated by over 30 years of experimental results. Our results found a remarkably high degree of sensitivity in identifying known gene interactions in the network (maximum 76.32%). We also generated 838 novel predictions for interactions that have not yet been described, which provide a resource for researchers to use to further complete the sea urchin GRN. ConclusionsGRN predictions that match known gene interactions can be produced using gene expression data alone from developmental time series experiments.
Gene regulatory network (GRN) inference can now take advantage of powerful machine learning algorithms to complement traditional experimental methods in building gene networks. However, the dynamical nature of embryonic development–representing the time-dependent interactions between thousands of transcription factors, signaling molecules, and effector genes–is one of the most challenging arenas for GRN prediction. In this work, we show that successful GRN predictions for a developmental network from gene expression data alone can be obtained with the Priors Enriched Absent Knowledge (PEAK) network inference algorithm. PEAK is a noise-robust method that models gene expression dynamics via ordinary differential equations and selects the best network based on information-theoretic criteria coupled with the machine learning algorithm Elastic Net. We test our GRN prediction methodology using two gene expression datasets for the purple sea urchin, Stronglyocentrotus purpuratus, and cross-check our results against existing GRN models that have been constructed and validated by over 30 years of experimental results. Our results find a remarkably high degree of sensitivity in identifying known gene interactions in the network (maximum 81.58%). We also generate novel predictions for interactions that have not yet been described, which provide a resource for researchers to use to further complete the sea urchin GRN. Published ChIPseq data and spatial co-expression analysis further support a subset of the top novel predictions. We conclude that GRN predictions that match known gene interactions can be produced using gene expression data alone from developmental time series experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.