Nickel sulfate doped triglycine sulfate crystals have been grown by natural evaporation method. The chemical composition of the pure triglycine sulfate crystals and the presence of nickel ion in doped triglycine sulfate crystal were confirmed by Energy Dispersive X-ray analysis. The functional groups of the grown crystals have been identified by the Fourier Transform Infrared spectroscopy. The structural studies on the grown crystals were carried out by X-ray Diffraction analysis. All the grown crystals are found in monoclinic structure and the lattice parameters of pure TGS crystal are a = 9.6010 Å, b = 12.5600 Å and c = 5.4500 Å. The lattice parameters are slightly distorted due to the incorporation of nickel ion into the lattice sites of the TGS crystal
Triglycine sulfate crystal and potassium bromide doped triglycine sulfate crystals were grown from aqueous solution by slow evaporation method. Energy dispersive X-ray analysis identifies the elements present in the crystal. The Fourier Transform Infrared spectroscopy has been recorded in the range 400 to 4000 cm<sup>-1</sup> and the functional groups of the grown crystals have been identified. The structural studies on the grown crystals were carried out by X-ray diffraction analysis technique and found that the grown crystal crystallizes in monoclinic structure. The lattice cell parameters of pure Triglycine sulfate are a = 9.6010 Å, b = 12.5600 Å, c = 5.4500 Å. Ultraviolet-Visible spectra show that the grown crystals have wide optical transparency in the entire visible region
Pure triglycine sulphate (TGS) and LiSO4-doped TGS crystals were grown from aqueous solution by natural evaporation method. The grown crystals were characterized by UV-vis spectroscopy, electrical conductivity () measurement, dielectric studies, microhardness, and thermogravimetry/differential thermal analysis. Pure TGS and LiSO4-doped TGS crystals were found highly transparent and full faced. The direct current conductivity is found to increase with temperature as well as dopant concentrations. Curie temperature remains the same for pure and doped crystals, but dielectric constant and dielectric loss increase with dopant concentration. The Vicker’s microhardness of the LiSO4-doped TGS crystals along (001) face is found higher than that of pure TGS crystals. Etching studies illustrate the quality of the doped crystal. The experimental results evidence the suitability of the grown crystal for optoelectronic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.