Mg ferrite was successfully synthesized by adopting a simple co-precipitation route. A physical property of Mg ferrite has been investigated employing XRD, FTIR, SEM, EDS, AFM and Raman spectroscopic techniques. The XRD results indicated the formation of single phase spinel ferrite with crystalline size of 36 nm. FTIR results confrmed ferrite tetrahedral (580 cm −1) and octahedral sites (430 cm −1) metal oxygen vibrations. The Raman result revealed the well defined Raman active modes of synthesized sample. Scanning electron microscopic (SEM) studies revealed nano crystalline nature of the sample. An elemental composition of the sample was studied by energy dispersive spectroscopy (EDS). Crystallite size, X-ray density, hopping length, and magnetic properties of the product are also reported. AFM provides surface roughness. The magnetic hysteresis curves clearly indicate the soft nature of the prepared nanoferrite. The Raman spectra shows five Raman active modes (A 1g + E g + 3F 2g) which are expected in the spinel structure and Raman spectra has a very good agreement with reported data. Various magnetic parameters such as saturation magnetization (M s), and remanence (M r) and coerciviy (H c) are obtained from the hysteresis loops.
Spinel type nano ferrite compound MgFe2O4 was synthesized through sol gel technique using metal nitrates as precursors. The phase composition, morphology and elemental analysis of magnesium ferrite (MgFe2O4) were performed by X-ray diffraction, fourier transform infrared, atomic force microscopy, energy dispersive x-ray and scanning electron microscopy, analyses.
The sample's X-ray diffraction pattern verifies the existence of single phase material, with the size of its crystallites estimated to be 39.9 nm. Fourier transform infrared examination supported metal-oxygen vibrations corresponding to tetrahedral and octahedral sites, respectively. From scanning electron microscopy image, grain size obtained about 97.7 nm. Raman spectra of the sample shows five Raman active modes (A1g + Eg + 3F2g), which is compatible with the spinel structure. Magnetic measurement study at room temperature shows a hysteresis loop behaviour with a low saturation magnetization value, 27.192 emu g-1 and a small coercivity value. The optical band gap determined using UV-visible transmittance spectra. Additionally, X-ray photoelectron spectroscopy are used to confirm oxidation states and explore the chemical composition of the sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.