Background The current pandemic of COVID-19 impacted the psychological wellbeing of populations globally. Objectives We aimed to examine the extent and identify factors associated with psychological distress, fear of COVID-19 and coping. Methods We conducted a cross-sectional study across 17 countries during Jun-2020 to Jan-2021. Levels of psychological distress (Kessler Psychological Distress Scale), fear of COVID-19 (Fear of COVID-19 Scale), and coping (Brief Resilient Coping Scale) were assessed. Results A total of 8,559 people participated; mean age (±SD) was 33(±13) years, 64% were females and 40% self-identified as frontline workers. More than two-thirds (69%) experienced moderate-to-very high levels of psychological distress, which was 46% in Thailand and 91% in Egypt. A quarter (24%) had high levels of fear of COVID-19, which was as low as 9% in Libya and as high as 38% in Bangladesh. More than half (57%) exhibited medium to high resilient coping; the lowest prevalence (3%) was reported in Australia and the highest (72%) in Syria. Being female (AOR 1.31 [95% CIs 1.09-1.57]), perceived distress due to change of employment status (1.56 [1.29-1.90]), comorbidity with mental health conditions (3.02 [1.20-7.60]) were associated with higher levels of psychological distress and fear. Doctors had higher psychological distress (1.43 [1.04-1.97]), but low levels of fear of COVID-19 (0.55 [0.41-0.76]); nurses had medium to high resilient coping (1.30 [1.03-1.65]). Conclusions The extent of psychological distress, fear of COVID-19 and coping varied by country; however, we identified few higher risk groups who were more vulnerable than others. There is an urgent need to prioritise health and well-being of those people through well-designed intervention that may need to be tailored to meet country specific requirements.
Even a brief exposure to severe stress strengthens synaptic connectivity days later in the amygdala, a brain area implicated in the affective symptoms of stress-related psychiatric disorders. However, little is known about the synaptic signaling mechanisms during stress that eventually culminate in its delayed impact on the amygdala. Hence, we investigated early stress-induced changes in amygdalar synaptic signaling in order to prevent its delayed effects. Whole-cell recordings in basolateral amygdala (BLA) slices from rats revealed higher frequency of miniature excitatory postsynaptic currents (mEPSCs) immediately after 2-h immobilization stress. This was replicated by inhibition of cannabinoid receptors (CB1R), suggesting a role for endocannabinoid (eCB) signaling. Stress also reducedN-arachidonoylethanolamine (AEA), an endogenous ligand of CB1R. Since stress-induced activation of fatty acid amide hydrolase (FAAH) reduces AEA, we confirmed that oral administration of an FAAH inhibitor during stress prevents the increase in synaptic excitation in the BLA soon after stress. Although stress also caused an immediate reduction in synaptic inhibition, this was not prevented by FAAH inhibition. Strikingly, FAAH inhibition during the traumatic stressor was also effective 10 d later on the delayed manifestation of synaptic strengthening in BLA neurons, preventing both enhanced mEPSC frequency and increased dendritic spine-density. Thus, oral administration of an FAAH inhibitor during a brief stress prevents the early synaptic changes that eventually build up to hyperexcitability in the amygdala. This framework is of therapeutic relevance because of growing interest in targeting eCB signaling to prevent the gradual development of emotional symptoms and underlying amygdalar dysfunction triggered by traumatic stress.
There is growing evidence that stress leads to contrasting patterns of structural plasticity in the hippocampus and amygdala, two brain areas implicated in the cognitive and affective symptoms of stress‐related psychiatric disorders. Acute stress has been shown to trigger a delayed increase in the density of dendritic spines in the basolateral amygdala (BLA) of rodents. However, the physiological correlates of this delayed spinogenesis in the BLA remain unexplored. Furthermore, NMDA receptors (NMDARs) have been known to underlie chronic stress‐induced structural plasticity in the hippocampus, but nothing is known about the role of these receptors in the delayed spinogenesis, and its physiological consequences, in the BLA following acute stress. Here, using whole‐cell recordings in rat brain slices, we find that a single exposure to 2‐h immobilization stress enhances the frequency, but not amplitude, of miniature excitatory postsynaptic currents (mEPSCs) recorded from principal neurons in the BLA 10 days later. This was also accompanied by faster use‐dependent block of NMDA receptor currents during repeated stimulation of thalamic inputs to the BLA, which is indicative of higher presynaptic release probability at these inputs 10 days later. Furthermore, targeted in vivo infusion of the NMDAR‐antagonist APV into the BLA during the acute stress prevents the increase in mEPSC frequency and spine density 10 days later. Together, these results identify a role for NMDARs during acute stress in both the physiological and morphological strengthening of synaptic connectivity in the BLA in a delayed fashion. These findings also raise the possibility that activation of NMDA receptors during stress may serve as a common molecular mechanism despite the divergent patterns of plasticity that eventually emerge after stress in the amygdala and hippocampus.
Human T-cell leukemia virus type 1 (HTLV-1) was the first oncogenic human retrovirus identified in humans which infects at least 10–15 million people worldwide. Large HTLV-1 endemic areas exist in Southern Japan, the Caribbean, Central and South America, the Middle East, Melanesia, and equatorial regions of Africa. HTLV-1 TAX viral protein is thought to play a critical role in HTLV-1 associated diseases. We have used numerous bio-informatics and immuno-informatics implements comprising sequence and construction tools for the construction of a 3D model and epitope prediction for HTLV-1 Tax viral protein. The conformational linear B-cell and T-cell epitopes for HTLV-1 TAX viral protein have been predicted for their possible collective use as vaccine candidates. Based on in silico investigation two B cell epitopes, KEADDNDHEPQISPGGLEPPSEKHFR and DGTPMISGPCPKDGQPS spanning from 324–349 and 252–268 respectively; and T cell epitopes, LLFGYPVYV, ITWPLLPHV and GLLPFHSTL ranging from 11–19, 163–171 and 233–241 were found most antigenic and immunogenic epitopes. Among different vaccine constructs generated by different combinations of these epitopes our predicted vaccine construct was found to be most antigenic with a score of 0.57. T cell epitopes interacted strongly with HLA-A*0201 suggesting a significant immune response evoked by these epitopes. Molecular docking study also showed a high binding affinity of the vaccine construct for TLR4. The study was carried out to predict antigenic determinants of the Tax protein along with the 3D protein modeling. The study revealed a potential multi epitope vaccine that can raise the desired immune response against HTLV-1 and be useful in developing effective vaccines against Human T-lymphotropic virus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.