The integration of tendon into bone occurs at a specialized interface known as the enthesis. The fibrous tendon to bone enthesis is established through a structurally continuous gradient from uncalcified tendon to calcified bone. The enthesis exhibits gradients in tissue organization classified into four distinct zones with varying cellular compositions, mechanical properties, and functions in order to facilitate joint movement. Damage to tendinous insertions is common in the field of orthopaedic medicine and often involves surgical intervention that requires the attempted recreation of the natural organization of tendon into bone. The difficulty associated with recreating the distinct organization may account for the surgical challenges associated with reconstruction of damaged insertion sites. These procedures are often associated with high failure rates and consequently require revision procedures. Management of tendinous injuries and recon-struction of the insertion site is becoming a popular topic in the field of orthopaedic medicine.
Clubfoot is one of the most common severe musculoskeletal birth defects, with a worldwide incidence of 1 in 1000 live births. In the present study, we describe a five-generation family with asymmetric right-sided predominant idiopathic clubfoot segregating as an autosomal-dominant condition with incomplete penetrance. Other lower-limb malformations, including patellar hypoplasia, oblique talus, tibial hemimelia, developmental hip dysplasia, and preaxial polydactyly, were also present in some family members. Genome-wide linkage analysis with Affymetrix GeneChip Mapping 10K mapping data from 13 members of this family revealed a multipoint LOD(max) of 3.31 on chromosome 5q31. A single missense mutation (c.388G-->A) was identified in PITX1, a bicoid-related homeodomain transcription factor critical for hindlimb development, and segregated with disease in this family. The PITX1 E130K mutation is located in the highly conserved homeodomain and reduces the ability of PITX1 to transactivate a luciferase reporter. The PITX1 E130K mutation also suppresses wild-type PITX1 activity in a dose-dependent manner, suggesting dominant-negative effects on transcription. The propensity for right-sided involvement in tibial hemimelia and clubfoot suggests that PITX1, or pathways involving PITX1, may be involved in their etiology. Implication of a gene involved in early limb development in clubfoot pathogenesis also suggests additional pathways for future investigations of idiopathic clubfoot etiology in humans.
Congenital vertical talus is an uncommon foot deformity that is present at birth and results in a rigid flatfoot deformity. Left untreated the deformity can result in pain and disability. Though the exact etiology of vertical talus is unknown, an increasing number of cases have been shown to have a genetic cause. Approximately 50% of all cases of vertical talus are associated with other neuromuscular abnormalities or known genetic syndromes. The remaining 50% of cases were once thought to be idiopathic in nature. However, there is increasing evidence that many of these cases are related to single gene defects. Most patients with vertical talus have been treated with major reconstructive surgeries that are fraught with complications such as wound necrosis, talar necrosis, undercorrection of the deformity, stiffness of the ankle and subtalar joint, and the eventual need for multiple operative procedures. Recently, a new approach to vertical talus that consists of serial casting and minimal surgery has resulted in excellent correction in the short-term. Longer follow-up will be necessary to ensure maintenance of correction with this new technique. A less invasive approach to the correction of vertical talus may provide more favorable long-term outcomes than more extensive surgery as has been shown to be true for clubfoot outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.