Osteoclasts employ highly specialized intracellular trafficking controls for bone resorption and organelle homeostasis. The sorting nexin Snx10 is a (Phosphatidylinositol 3-phosphate) PI3P-binding protein, which localizes to osteoclast early endosomes. Osteoclasts from humans and mice lacking functional Snx10 are severely dysfunctional. They show marked impairments in endocytosis, extracellular acidification, ruffled border formation, and bone resorption, suggesting that Snx10 regulates membrane trafficking. To better understand how SNx10 regulates vesicular formation and trafficking in osteoclasts, we set out on a search for Snx10 partners. We performed a yeast two-hybrid screening and identified FKBP12. FKBP12 is expressed in receptor activator of nuclear factor kB ligand-stimulated RAW264.7 monocytes, coimmunoprecipitates with Snx10, and colocalizes with Snx10 in osteoclasts. We also found that FKBP12, Snx10, and early endosome antigen 1 (EEA1) are present in the same subcellular fractions obtained by centrifugation in sucrose gradients, which confirms localization of FKBP12 to early endosomes. Taken together, these results indicate that Snx10 and FKBP12 are partners and suggest that Snx10 and FKBP12 are involved in the regulation of endosome/lysosome homeostasis via the synthesis. These findings may suggest novel therapeutic approaches to control bone loss by targeting essential steps in osteoclast membrane trafficking. K E Y W O R D S osteoclast, resorption, vesicular trafficking J Cell Biochem. 2019;120:13321-13329.wileyonlinelibrary.com/journal/jcb
There is increasing evidence that anterior pituitary hormones, traditionally thought to have unitary functions in regulating single endocrine targets, act on multiple somatic tissues, such as bone, fat, and liver. There is also emerging evidence for anterior pituitary hormone action on brain receptors in mediating central neural and peripheral somatic functions. Here, we have created the most comprehensive neuroanatomical atlas on the expression of TSHR, LHCGR and FSHR. We have used RNAscope, a technology that allows the detection of mRNA at single-transcript level, together with protein level validation, to document Tshr expression in 173 and Fshr expression in 353 brain regions, nuclei and sub-nuclei identified using the Atlas for the Mouse Brain in Stereotaxic Coordinates. We also identified Lhcgr transcripts in 401 brain regions, nuclei and sub-nuclei. Complementarily, we used ViewRNA, another single-transcript detection technology, to establish the expression of FSHR in human brain samples, where transcripts were co-localized in MALAT1 positive neurons. In addition, we show high expression for all three receptors in the ventricular region-with yet unknown functions. Intriguingly, Tshr and Fshr expression in the ependymal layer of the third ventricle was similar to that of the thyroid follicular cells and testicular Sertoli cells, respectively. In contrast, Fshr was localized to NeuN-positive neurons in the granular layer of the dentate gyrus in murine and human brain-both are Alzheimer's disease vulnerable regions. Our atlas thus provides a vital resource for scientists to explore the link between the stimulation or inactivation of brain glycoprotein hormone receptors on somatic function. New actionable pathways for human disease may be unmasked through further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.