We report on a 1-year-old boy with craniosynostosis, microcephaly, developmental delay and dysmorphic features. Chromosomal studies of the proband showed 46,XY,add(2)(q37)dn and those of the parents were normal. The rearranged material in the patient was further defined using array comparative genomic hybridization (array CGH), which revealed loss of 2Mb distal to 2q37.3 and duplication of 15Mb from 5q34 --> qter. Fluorescence in situ hybridization (FISH) studies using subtelomeric 2q and 5q probes showed the 2q deletion and 5q duplication resulting from a rearrangement of the segment from 5q onto the long arm of chromosome 2. FISH studies of the parents did not show any rearrangement. Recently it has been proposed that an extra copy of MSX2 that maps to 5q35.2 causes premature synostosis of the sutures via the MSX2-mediated pathway of calvarial osteogenic differentiation. Our case further supports the role of MSX2 duplication in the etiology of craniosynostosis.
Cutis laxa is a heterogeneous condition characterized by redundant, sagging, inelastic, and wrinkled skin. The inherited forms of this disease are rare and can have autosomal dominant, autosomal recessive, or X-linked inheritance. Three of the autosomal recessive cutis laxa syndromes, namely cutis laxa IIA (ARCL2A), cutis laxa IIB (ARCL2B), and geroderma osteodysplastica (GO), have very similar clinical features, complicating accurate diagnosis. Individuals with these conditions often present with cutis laxa, progeroid features, and hyperextensible joints. These conditions also share additional features, such as short stature, hypotonia, and congenital hip dislocation, but the severity and frequency of these findings are variable in each of these cutis laxa syndromes. The characteristic features for ARCL2A are abnormal isoelectric focusing and facial features, including downslanting palpebral fissures and a long philtrum. Rather, the clinical phenotype of ARCL2B includes severe wrinkling of the dorsum of the hands and feet, wormian bones, athetoid movements, lipodystrophy, cataract and corneal clouding, a thin triangular face, and a pinched nose. Normal cognition and osteopenia leading to pathological fractures, maxillary hypoplasia, and oblique furrowing from the outer canthus to the lateral border of the supraorbital ridge are discriminative features for GO. Here we present 10 Iranian patients who were initially diagnosed clinically using the respective features of each cutis laxa syndrome. Each patient's clinical diagnosis was then confirmed with molecular Int.
See Ginevrino and Valente (doi:10.1093/brain/awx260) for a scientific commentary on this article. Autosomal dominant torsion dystonia-1 is a disease with incomplete penetrance most often caused by an in-frame GAG deletion (p.Glu303del) in the endoplasmic reticulum luminal protein torsinA encoded by TOR1A. We report an association of the homozygous dominant disease-causing TOR1A p.Glu303del mutation, and a novel homozygous missense variant (p.Gly318Ser) with a severe arthrogryposis phenotype with developmental delay, strabismus and tremor in three unrelated Iranian families. All parents who were carriers of the TOR1A variant showed no evidence of neurological symptoms or signs, indicating decreased penetrance similar to families with autosomal dominant torsion dystonia-1. The results from cell assays demonstrate that the p.Gly318Ser substitution causes a redistribution of torsinA from the endoplasmic reticulum to the nuclear envelope, similar to the hallmark of the p.Glu303del mutation. Our study highlights that TOR1A mutations should be considered in patients with severe arthrogryposis and further expands the phenotypic spectrum associated with TOR1A mutations.
Introduction: Spinal muscular atrophy (SMA) is a common neuromuscular disorder with progressive paralysis caused by the loss of -motor neurons in the spinal cord. The survival motor neuron (SMN) protein is encoded by 2 genes, SMN1 and SMN2. The most frequent mutation is the biallelic deletion of exon 7 of the SMN1 gene. In SMA, SMN2 cannot compensate for the loss of SMN1, due to the exclusion of exon 7. The aim of our study was to estimate the frequency of the common SMN1 exon 7 deletion in patients referred to our centre for carrier detection and prenatal diagnosis. Materials and Methods: We performed the detection of exon 7 deletion of the SMN1 gene for the affected patients and fetuses suspected to have SMA. Results: Of 243 families, 195 were classified as SMA type I, 30 as type II, and 18 as type III according to their family histories. The analysis of exon 7 deletion among living affected children showed that 94% of the patients with SMA type I, 95% with type II families and 100% with type III had homozygous deletions. Of the prenatal diagnoses, 21 (22.8%) of the 92 fetuses were found to be affected and these pregnancies were terminated. Conclusions: The homozygosity frequency for the deletion of SMN1 exon 7 for all 3 types was (94%), similar to those of Western Europe, China, Japan and Kuwait. Key words: Iranian patients, SMN1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.