Background: One of the leading causes of death is brain tumors. Accurate tumor classification leads to appropriate decision making and providing the most efficient treatment to the patients. This study aims to optimize brain tumor MR images classification accuracy using optimal threshold, PCA and training Adaptive Neuro Fuzzy Inference System (ANFIS) with different repetitions.Material and Methods: The procedure used in this study consists of five steps: (1) T1, T2 weighted images collection, (2) tumor separation with different threshold levels, (3) feature extraction, (4) presence and absence of feature reduction applying principal component analysis (PCA) and (5) ANFIS classification with 0, 20 and 200 training repetitions. Results: ANFIS accuracy was 40%, 80% and 97% for all features and 97%, 98.5% and 100% for the 6 selected features by PCA in 0, 20 and 200 training repetitions, respectively.Conclusion: The findings of the present study demonstrated that accuracy can be raised up to 100% by using an optimized threshold method, PCA and increasing training repetitions.
Background:
Recently, magnetic resonance imaging (MRI)-based radiotherapy has become a favorite science field for treatment planning purposes. In this study, a simple algorithm was introduced to create synthetic computed tomography (sCT) of the head from MRI.
Methods:
A simple atlas-based method was proposed to create sCT images based on the paired T1/T2-weighted MRI and bone/brain window CT. Dataset included 10 patients with glioblastoma multiforme and 10 patients with other brain tumors. To generate a sCT image, first each MR from dataset was registered to the target-MR, the resulting transformation was applied to the corresponding CT to create the set of deformed CTs. Then, deformed-CTs were fused to generate a single sCT image. The sCT images were compared with the real CT images using geometric measures (mean absolute error [MAE] and dice similarity coefficient of bone [DSC
bone
]) and Hounsfield unit gamma-index (Г
HU
) with criteria 100 HU/2 mm.
Results:
The evaluations carried out by MAE, DSC
bone
, and Г
HU
showed a good agreement between the synthetic and real CT images. The results represented the range of 78–93 HU and 0.80–0.89 for MAE and DSC
bone
, respectively. The Г
HU
also showed that approximately 91%–93% of pixels fulfilled the criteria 100 HU/2 mm for brain tumors.
Conclusion:
This method showed that MR sequence (T1w or T2w) should be selected depending on the type of tumor. In addition, the brain window synthetic CTs are in better agreement with real CT relative to bone window sCT images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.