Background The damaged neuronal cells of adult mammalian lack the regenerative ability to replace the neuronal connections. Periodontal ligament stem cells (PDLSCs) are the promising source for neuroregenerative applications that can improve the injured microenvironment of the damaged neural system. They provide neuronal progenitors and neurotrophic, anti-apoptotic and anti-inflammatory factors. In this study, we aimed to comprehensively explore the various neuronal differentiation potentials of PDLSCs for application in neural regeneration therapy. Main text PDLSCs have superior potential to differentiate into various neural-like cells through a dedifferentiation stage followed by differentiation process without need for cell division. Diverse combination of nutritional factors can be used to induce the PDLSCs toward neural lineage. PDLSCs when coupled with biomaterials could have significant implications for neural tissue repair. PDLSCs can be a new clinical research target for Alzheimer's disease treatment, multiple sclerosis and cerebral ischemia. Moreover, PDLSCs have beneficial effects on retinal ganglion cell regeneration and photoreceptor survival. PDLSCs can be a great source for the repair of injured peripheral nerve through the expression of several neural growth factors and differentiation into Schwann cells. Conclusion In conclusion, these cells are an appealing source for utilizing in clinical treatment of the neuropathological disorders. Although significant in vitro and in vivo investigations were carried out in order for neural differentiation evaluation of these cells into diverse types of neurons, more preclinical and clinical studies are needed to elucidate their therapeutic potential for neural diseases.
Most medical investigations have found a reduced blood level of miR-146a in type 2 diabetes (T2D) patients, suggesting an important role for miR-146a (microRNA-146a) in the etiology of diabetes mellitus (DM) and its consequences. Furthermore, injection of miR-146a mimic has been confirmed to alleviate diabetes mellitus in diabetic animal models. In this line, deregulation of miR-146a expression has been linked to the progression of nephropathy, neuropathy, wound healing, olfactory dysfunction, cardiovascular disorders, and retinopathy in diabetic patients. In this review, besides a comprehensive review of the function of miR-146a in DM, we discussed new findings on type 1 (T1MD) and type 2 (T2DM) diabetes mellitus, highlighting the discrepancies between clinical and preclinical investigations and elucidating the biological pathways regulated through miR-146a in DM-affected tissues.
Graphene‐based nanocomposites have recently attracted increasing attention in tissue engineering because of their extraordinary features. These biocompatible substances, in the presence of an apt microenvironment, can stimulate and sustain the growth and differentiation of stem cells into different lineages. This review discusses the characteristics of graphene and its derivatives, such as their excellent electrical signal transduction, carrier mobility, outstanding mechanical strength with improving surface characteristics, self‐lubrication, antiwear properties, enormous specific surface area, and ease of functional group modification. Moreover, safety issues in the application of graphene and its derivatives in terms of biocompatibility, toxicity, and interaction with immune cells are discussed. We also describe the applicability of graphene‐based nanocomposites in tissue healing and organ regeneration, particularly in the bone, cartilage, teeth, neurons, heart, skeletal muscle, and skin. The impacts of special textural and structural characteristics of graphene‐based nanomaterials on the regeneration of various tissues are highlighted. Finally, the present review gives some hints on future research for the transformation of these exciting materials in clinical studies.
Background: Alzheimer disease (AD) is a progressive neurodegenerative disease leading to neuronal cell death and manifested by cognitive disorders and behavioral impairment. Mesenchymal stem cells (MSCs) are one of the most promising candidates to stimulate neuroregeneration and prevent disease progression. Optimization of MSC culturing protocols is a key strategy to increase the therapeutic potential of the secretome. Objectives: Here, we investigated the effect of brain homogenate of a rat model of AD (BH-AD) on the enhancement of protein secretion in the secretome of periodontal ligament stem cells (PDLSCs) when cultured in a 3D environment. Moreover, the effect of this modified secretome was examined on neural cells to study the impact of the conditioned medium (CM) on stimulation of regeneration or immunomodulation in AD. Methods: PDLSCs were isolated and characterized. Then, the spheroids of PDLSCs were generated in a modified 3D culture plate. PDLSCs-derived CM was prepared in the presence of BH-AD (PDLSCs-HCM) and the absence of it (PDLSCs-CM). The viability of C6 glioma cells was assessed after exposure to different concentrations of both CMs. Then, a proteomic analysis was performed on the CMs. Results: Differentiation into adipocytes and high expression of MSCs markers verified the precise isolation of PDLSCs. The PDLSC spheroids were formed after 7 days of 3D culturing, and their viability was confirmed. The effect of CMs on C6 glioma cell viability showed that both CMs at low concentrations (> 20 mg/mL) had no cytotoxic effect on C6 neural cells. The results showed that PDLSCs-HCM contains higher concentrations of proteins compared to PDLSCs-CM, including Src-homology 2 domain (SH2)-containing PTPs (SHP-1) and muscle glycogen phosphorylase (PYGM) proteins. SHP-1 has a role in nerve regeneration, and PYGM is involved in glycogen metabolism. Conclusions: The modified secretome derived from 3D cultured spheroids of PDLSCs treated by BH-AD as a reservoir of regenerating neural factors can serve as a potential source for AD treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.