The increasing prevalence of obesity and overweight is a significant public concern throughout the world. Obesity is a complex disorder involving an excessive amount of body fat. It is not just a cosmetic concern. It is a medical challenge that increases the risk of other diseases and health circumstances, such as diabetes, heart disease, high blood pressure and certain cancers. Environmental and genetic factors are involved in obesity as a significant metabolic disorder along with diabetes. Gut microbiota (GM) has a high potential for energy harvesting from the diet. In the current review, we aim to consider the role of GM, gut dysbiosis and significant therapies to treat obesity. Dietary modifications, probiotics, prebiotics, synbiotics compounds, using faecal microbiota transplant, and other microbial-based therapies are the strategies to intervene in obesity reducing improvement. Each of these factors serves through various mechanisms including a variety of receptors and compounds to control body weight. Trial and animal investigations have indicated that GM can affect both sides of the energy-balancing equation; first, as an influencing factor for energy utilisation from the diet and also as an influencing factor that regulates the host genes and energy storage and expenditure. All the investigated articles declare the clear and inevitable role of GM in obesity. Overall, obesity and obesity-relevant metabolic disorders are characterised by specific modifications in the human microbiota’s composition and functions. The emerging therapeutic methods display positive and promising effects; however, further research must be done to update and complete existing knowledge.
Carbapenems are employed to treat infections caused by Gram-negative bacteria including Klebsiella pneumoniae. This research is aimed to perform phenotypic detection of β-lactamases and molecular characterization of NDM-1 positive K. pneumoniae isolates. Another objective is to investigate NDM-1 producing K. pneumoniae among children in Iran. From 2019 to 2020, altogether 60 K. pneumoniae isolates were acquired from various patients in certain Iranian hospitals. Antimicrobial susceptibility testing was performed by disk diffusion and broth microdilution methods. In addition, mCIM and eCIM were used to confirm the production of carbapenemases and metallo-beta-lactamases (MBLs), respectively. Detection of resistance genes namely, blaNDM-1, blaIMP, blaVIM, blaKPC, blaOXA-48-like, blaCTX-M, blaSHV, blaTEM, and mcr-1 was performed by PCR and confirmed by DNA sequencing. Multilocus sequence typing (MLST) was employed to determine the molecular typing of the strains. According to the findings, the highest rate of carbapenem resistance was detected against doripenem 83.3% (50). Moreover, 31.7% (19) were resistant to colistin. Further to the above, altogether 80% (48) were carbapenemase-producing isolates and among them 46.7% (28) of the isolates were MBL and 33.3% (20) isolates were serine β-lactamase producer. According to the PCR results, 14 isolates produced blaNDM-1. Remarkably, four blaNDM-1 positive isolates were detected in children. In addition, these isolates were clonally related as determined by MLST (ST147, ST15). Altogether ten blaNDM-1 positive isolates were ST147 and four blaNDM-1 positive isolates were ST15. Based on the results, the emergence of NDM-producing K. pneumoniae among children is worrying and hence, it is necessary to develop a comprehensive program to control antibiotic resistance in the country.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.