Osteosarcoma is a neoplasm of mesenchymal origin with features of osteogenic differentiation. Patients with recurrent or metastatic disease have a very poor prognosis. To define the landscape of somatic mutations in pediatric osteosarcoma, we performed whole-genome sequencing of DNA from 20 osteosarcoma tumor samples and matched normal tissue (obtained from 19 patients) in the discovery cohort as well as 14 samples from 13 patients in the validation cohort. Our results demonstrate that pediatric osteosarcoma is characterized by multiple somatic chromosomal lesions, including structural variations (SVs) and copy number alterations (CNAs). Moreover, single nucleotide variations (SNVs) exhibit a pattern of localized hypermutation called “kataegis” in 50% of the tumors. Despite these regions of kataegis across the osteosarcoma genomes, we detected relatively few recurrent SNVs, and only when SVs were included did we identify the major pathways that are mutated in osteosarcoma. We identified p53 pathway lesions in all 19 patient’s tumors in the discovery cohort, 9 of which were translocations in the first intron of the TP53 gene, leading to gene inactivation. This mechanism of p53 gene inactivation is unique to osteosarcoma among pediatric cancers. In an additional cohort of 32 patients, TP53 gene alterations were identified in 29 of those tumors. Beyond TP53, the RB1, ATRX and DLG2 genes showed recurrent somatic alterations (SNVs and/or SVs) in 29–53% of the tumors. These data highlight the power of whole-genome sequencing in identifying recurrent somatic alterations in cancer genomes that may be missed using other methods.
Desmoid tumor (DT; other synonymously used terms: Desmoid-type fibromatosis, aggressive fibromatosis) is a rare and locally aggressive monoclonal, fibroblastic proliferation characterised by a variable and often unpredictable clinical course. Previously surgery was the standard primary treatment modality; however, in recent years a paradigm shift towards a more conservative management has been introduced and an effort to harmonise the strategy amongst clinicians has been made. We present herein an evidence-based, joint global consensus guideline approach to the management of this disease focussing on: molecular genetics, indications for an active treatment, and available systemic therapeutic options. This paper follows a one-day consensus meeting held in Milan, Italy, in June 2018 under the auspices of the European Reference Network for rare solid adult cancers, EURACAN, the European Organisation for Research and Treatment of Cancer (EORTC) Soft Tissue and Bone Sarcoma Group (STBSG) as well as Sarcoma Patients Euro-Net (SPAEN) and The Desmoid tumour Research Foundation (DTRF). The meeting brought
Interest in combining radiotherapy and immune checkpoint therapy is growing rapidly. In this study, we explored a novel combination of this type to augment anti-tumor immune responses in preclinical murine models of melanoma, neuroblastoma, and head and neck squamous cell carcinoma. Cooperative effects were observed with local radiotherapy and intratumoral injection of tumor-specific antibodies, arising in part from enhanced antibody-dependent cell-mediated cytotoxicity (ADCC). We could improve this response by combining radiation with intratumoral injection of an IL-2-linked tumor-specific antibody (termed here an immunocytokine), resulting in complete regression of established tumors in most animals associated with a tumor-specific memory T cell response. Given the T cell response elicited by combined local radiation and intratumoral immunocytokine, we tested the potential benefit of adding this treatment to immune checkpoint blockade. In mice bearing large primary tumors or disseminated metastases, the triple-combination of intratumoral immunocytokine, radiation, and systemic anti-CTLA-4 improved primary tumor response and animal survival compared to combinations of any two of these three interventions. Taken together, our results show how combining radiation and intratumoral immunocytokine in murine tumor models can eradicate large tumors and metastases, eliciting an in situ vaccination effect that can be leveraged further by T cell checkpoint blockade, with immediate implications for clinical evaluation.
Despite remarkable advances in the genomic characterization of adult melanoma, the molecular pathogenesis of pediatric melanoma remains largely unknown. We analyzed 15 conventional melanomas (CMs), 3 melanomas arising in congenital nevi (CNMs), and 5 spitzoid melanomas (SMs), using various platforms, including whole genome or exome sequencing, the molecular inversion probe assay, and/or targeted sequencing. CMs demonstrated a high burden of somatic single-nucleotide variations (SNVs), with each case containing a TERT promoter (TERT-p) mutation, 13/15 containing an activating BRAF V600 mutation, and >80% of the identified SNVs consistent with UV damage. In contrast, the three CNMs contained an activating NRAS Q61 mutation and no TERT-p mutations. SMs were characterized by chromosomal rearrangements resulting in activated kinase signaling in 40%, and an absence of TERT-p mutations, except for the one SM that succumbed to hematogenous metastasis. We conclude that pediatric CM has a very similar UV-induced mutational spectrum to that found in the adult counterpart, emphasizing the need to promote sun protection practices in early life and to improve access to therapeutic agents being explored in adults in young patients. In contrast, the pathogenesis of CNM appears to be distinct. TERT-p mutations may identify the rare subset of spitzoid melanocytic lesions prone to disseminate.
Purpose The addition of immunotherapy, including a combination of anti-GD2 monoclonal antibody (mAb), ch14.18, and cytokines, improves outcome for patients with high-risk neuroblastoma. However, this therapy is limited by ch14.18-related toxicities that may be partially mediated by complement activation. We report the results of a phase I trial to determine the maximum-tolerated dose (MTD), safety profile, and pharmacokinetics of hu14.18K322A, a humanized anti-GD2 mAb with a single point mutation (K322A) that reduces complement-dependent lysis. Patients and Methods Eligible patients with refractory or recurrent neuroblastoma received escalating doses of hu14.18K322A ranging from 2 to 70 mg/m2 per day for 4 consecutive days every 28 days (one course). Results Thirty-eight patients (23 males; median age, 7.2 years) received a median of two courses (range, one to 15). Dose-limiting grade 3 or 4 toxicities occurred in four of 36 evaluable patients and were characterized by cough, asthenia, sensory neuropathy, anorexia, serum sickness, and hypertensive encephalopathy. The most common non–dose-limiting grade 3 or 4 toxicities during course one were pain (68%) and fever (21%). Six of 31 patients evaluable for response by iodine-123 metaiodobenzylguanidine score had objective responses (four complete responses; two partial responses). The first-course pharmacokinetics of hu14.18K322A were best described by a two-compartment linear model. Median hu14.18K322A α (initial phase) and β (terminal phase) half-lives were 1.74 and 21.1 days, respectively. Conclusion The MTD, and recommended phase II dose, of hu14.18K322A is 60 mg/m2 per day for 4 days. Adverse effects, predominately pain, were manageable and improved with subsequent courses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.