Purpose: Patient-derived xenograft models are considered to represent the heterogeneity of human cancers and advanced preclinical models. Our consortium joins efforts to extensively develop and characterize a new collection of patient-derived colorectal cancer (CRC) models.Experimental Design: From the 85 unsupervised surgical colorectal samples collection, 54 tumors were successfully xenografted in immunodeficient mice and rats, representing 35 primary tumors, 5 peritoneal carcinoses and 14 metastases. Histologic and molecular characterization of patient tumors, first and late passages on mice includes the sequence of key genes involved in CRC (i.e., APC, KRAS, TP53), aCGH, and transcriptomic analysis.Results: This comprehensive characterization shows that our collection recapitulates the clinical situation about the histopathology and molecular diversity of CRC. Moreover, patient tumors and corresponding models are clustering together allowing comparison studies between clinical and preclinical data. Hence, we conducted pharmacologic monotherapy studies with standard of care for CRC (5-fluorouracil, oxaliplatin, irinotecan, and cetuximab). Through this extensive in vivo analysis, we have shown the loss of human stroma cells after engraftment, observed a metastatic phenotype in some models, and finally compared the molecular profile with the drug sensitivity of each tumor model. Through an experimental cetuximab phase II trial, we confirmed the key role of KRAS mutation in cetuximab resistance.Conclusions: This new collection could bring benefit to evaluate novel targeted therapeutic strategies and to better understand the basis for sensitivity or resistance of tumors from individual patients.
Breast cancers are composed of molecularly distinct subtypes with different clinical outcomes and responses to therapy. To discover potential therapeutic targets for the poor prognosis-associated triple-negative breast cancer (TNBC), gene expression profiling was carried out on a cohort of 130 breast cancer samples. Polo-like kinase 1 (PLK1) was found to be significantly overexpressed in TNBC compared with the other breast cancer subtypes. High PLK1 expression was confirmed by reverse phase protein and tissue microarrays. In triple-negative cell lines, RNAi-mediated PLK1 depletion or inhibition of PLK1 activity with a small molecule (BI-2536) induced an increase in phosphorylated H2AX, G 2 -M arrest, and apoptosis. A soft-agar colony assay showed that PLK1 silencing impaired clonogenic potential of TNBC cell lines. When cells were grown in extracellular matrix gels (Matrigel), and exposed to BI-2536, apoptosis was observed specifically in TNBC cancerous cells, and not in a normal cell line. When administrated as a single agent, the PLK1 inhibitor significantly impaired tumor growth in vivo in two xenografts models established from biopsies of patients with TNBC. Most importantly, the administration of BI-2536, in combination with doxorubicin þ cyclophosphamide chemotherapy, led to a faster complete response compared with the chemotherapy treatment alone and prevented relapse, which is the major risk associated with TNBC. Altogether, our observations suggest PLK1 inhibition as an attractive therapeutic approach, in association with conventional chemotherapy, for the management of patients with TNBC. Cancer Res; 73(2); 813-23. Ó2012 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.