The aim of this systematic review was to identify randomized controlled trials that looked at the effects of Nigella sativa in any form on different skin diseases. Up to March 2022, the online databases of Scopus, Web of Science, PubMed, Embase, Google Scholar, and Cochrane trials were searched. This study included 14 records of people who had experienced different types of skin disease including atopic dermatitis, vulgaris, arsenical keratosis, psoriasis, vitiligo, acute cutaneous leishmaniasis, warts, eczema, and acne. The mean SD age of the patients was 28.86 (4.49); [range: 18.3–51.4], with females accounting for 69% (506 out of 732) of the total. The follow-up mean SD was 8.16 (1.3) (ranged: 4 days to 24 weeks). The odds ratio (OR) was found to be 4.59 in a meta-analysis (95% CI: 2.02, 10.39). Whereas the null hypothesis in this systematic review was that lotion had no impact, OR 4.59 indicated that lotion could be effective. The efficacy of N. sativa essential oil and extract has been demonstrated in most clinical studies. However, more research is needed to completely evaluate and validate the efficacy or inadequacy of therapy with N. sativa, although it appears that it can be used as an alternative treatment to help people cope with skin problems.
Background: Natural products have been important resources for potential drug development. Among the many classes of natural products, alkaloids have the most therapeutic applications. Treatment of leishmaniasis by chemical drugs remains a challenge because of toxic side effects, limited efficacy, and drug resistance. This review focuses to embrace all researches on leishmanicidal alkaloids over a specific range of time, with special consideration the molecular mechanism of action, and structure-related activity. Methods: All publications (in English) from Web of Science, PubMed, Science Direct, Scopus, and Google Scholar from 2000-2021 using a variety of keywords such as natural alkaloids, herbal alkaloids, marine alkaloids along with leishmaniasis were included in the present study. In this summary, the focus is mainly on natural alkaloids of plant, mineral, marine origin, etc., which have empirically demonstrated the antileishmanial effect. Results: Fourteen categories of alkaloids with anti-leishmaniasis activity were extracted from the articles. The highest number of alkaloids belonged to isoquinoline, indole, and quinoline alkaloids (21.78%, 20.67%, and 16.48% respectively). This review indicated that the mentioned alkaloids are able to inhibit the proliferation of parasites, the respiratory chain and protein synthesis, arrest the cell cycle, disrupt the mitochondrial membrane integrity, inhibit leishmanial topoisomerase, induce mitochondrial dysfunction, and changes in the parasite morphology. Discussion: The present study highlighted antileishmanial alkaloids that are active against different species of Leishmania in vitro and some of them are also active in visceral and cutaneous leishmaniasis models. However, more clinical studies are needed to clarify the anti-leishmanial activity of alkaloids against leishmania in detail. Conclusion: Among the reported compounds, two main classes of alkaloids including isoquinoline and indole alkaloids cover a wider range of anti-parasitic compounds, and structure-activity relationships (SAR) studies of these molecular skeletons may be good lead compounds and afford the structural clues to develop novel medicines with more selective therapeutic profiles.
Background: Exposure to arsenic through drinking water is a global health problem that causes multisystem toxicity, mainly by inducing oxidative stress and impairing cellular energy. Objective: We aimed to evaluate the effect of Quercus infectoria gall extract (Qi) against oxidative stress induced by sub-acute exposure to arsenic. Methods: The plant galls were extracted with methanol and were used for the determination of total phenolic content using Folin-Cio calteu reagent. Male Wistar rats were randomly divided into 8 groups of 6 animals and treated for 30 days. Negative and positive control groups received, respectively, normal saline and sodium arsenite (5.5 mg/kg) by gavage. Treatment groups received three doses of Qi (200, 400, and 600 mg/kg/day) by intraperitoneal injection 2 h. after oral administration of normal saline or sodium arsenite (5.5 mg/kg) (As-Qi). After 30 days, all animals were anesthetized with ketamine/xylasine and 2 mL of blood was taken for measurement of total antioxidant capacity using ferric reducing antioxidant power (FRAP), lipid peroxidation (measurement of malondialdehyde (MDA)) and protein carbonylation of plasma. Results: Total phenolic content of the plant was determined to be 5.78± 0.23mg gallic acid equivalent/ g dried extract. The results of pharmacological studies indicated that in arsenic treated animals, a significant decrease in TAC, increase in lipid peroxidation and protein carbonylation happens compared to control group. Co-administration of Qi (600 mg/kg) with arsenic significantly increased TAC compared with arsenic group (0.245 ± 0.007 versus 0.183 ± 0.027 for arsenic) (p<0.05), while the serum MDA level (1.880± 0.499 versus 2.795 ± 0.112 for arsenic) and protein carbonylation were decreased in this group compared with arsenic treated animals (0.128± 0.007 versus 0.159 ± 0.009 for arsenic) (p<0.01). In non-treated arsenic animals (NTAS), all three doses of Qi improved oxidative stress markers. Conclusion: Arsenic disrupt cellular antioxidant defense through overproduction of ROS and the Qi galls are able to revert some of these oxidant activities of arsenic. Previous studies have reported antioxidants in the plant and the present work can conclude that antioxidant effect of Qi is useful against happened oxidative stress in arsenic treated animals. other: no
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.