Background Rigorous analysis of levels and trends in exposure to leading risk factors and quantification of their effect on human health are important to identify where public health is making progress and in which cases current efforts are inadequate. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a standardised and comprehensive assessment of the magnitude of risk factor exposure, relative risk, and attributable burden of disease. MethodsGBD 2019 estimated attributable mortality, years of life lost (YLLs), years of life lived with disability (YLDs), and disability-adjusted life-years (DALYs) for 87 risk factors and combinations of risk factors, at the global level, regionally, and for 204 countries and territories. GBD uses a hierarchical list of risk factors so that specific risk factors (eg, sodium intake), and related aggregates (eg, diet quality), are both evaluated. This method has six analytical steps. (1) We included 560 risk-outcome pairs that met criteria for convincing or probable evidence on the basis of research studies. 12 risk-outcome pairs included in GBD 2017 no longer met inclusion criteria and 47 risk-outcome pairs for risks already included in GBD 2017 were added based on new evidence. (2) Relative risks were estimated as a function of exposure based on published systematic reviews, 81 systematic reviews done for GBD 2019, and meta-regression. (3) Levels of exposure in each age-sex-location-year included in the study were estimated based on all available data sources using spatiotemporal Gaussian process regression, DisMod-MR 2.1, a Bayesian meta-regression method, or alternative methods. (4) We determined, from published trials or cohort studies, the level of exposure associated with minimum risk, called the theoretical minimum risk exposure level. (5) Attributable deaths, YLLs, YLDs, and DALYs were computed by multiplying population attributable fractions (PAFs) by the relevant outcome quantity for each agesex-location-year. (6) PAFs and attributable burden for combinations of risk factors were estimated taking into account mediation of different risk factors through other risk factors. Across all six analytical steps, 30 652 distinct data sources were used in the analysis. Uncertainty in each step of the analysis was propagated into the final estimates of attributable burden. Exposure levels for dichotomous, polytomous, and continuous risk factors were summarised with use of the summary exposure value to facilitate comparisons over time, across location, and across risks. Because the entire time series from 1990 to 2019 has been re-estimated with use of consistent data and methods, these results supersede previously published GBD estimates of attributable burden. Findings The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure. Global declines also occurred for tobac...
Background Hypertension can be detected at the primary health-care level and low-cost treatments can effectively control hypertension. We aimed to measure the prevalence of hypertension and progress in its detection, treatment, and control from 1990 to 2019 for 200 countries and territories. MethodsWe used data from 1990 to 2019 on people aged 30-79 years from population-representative studies with measurement of blood pressure and data on blood pressure treatment. We defined hypertension as having systolic blood pressure 140 mm Hg or greater, diastolic blood pressure 90 mm Hg or greater, or taking medication for hypertension. We applied a Bayesian hierarchical model to estimate the prevalence of hypertension and the proportion of people with hypertension who had a previous diagnosis (detection), who were taking medication for hypertension (treatment), and whose hypertension was controlled to below 140/90 mm Hg (control). The model allowed for trends over time to be non-linear and to vary by age.Findings The number of people aged 30-79 years with hypertension doubled from 1990 to 2019, from 331 (95% credible interval 306-359) million women and 317 (292-344) million men in 1990 to 626 (584-668) million women and 652 (604-698) million men in 2019, despite stable global age-standardised prevalence. In 2019, age-standardised hypertension prevalence was lowest in Canada and Peru for both men and women; in Taiwan, South Korea, Japan, and some countries in western Europe including Switzerland, Spain, and the UK for women; and in several low-income and middle-income countries such as Eritrea, Bangladesh, Ethiopia, and Solomon Islands for men. Hypertension prevalence surpassed 50% for women in two countries and men in nine countries, in central and eastern Europe, central Asia, Oceania, and Latin America. Globally, 59% (55-62) of women and 49% (46-52) of men with hypertension reported a previous diagnosis of hypertension in 2019, and 47% (43-51) of women and 38% (35-41) of men were treated. Control rates among people with hypertension in 2019 were 23% (20-27) for women and 18% (16-21) for men. In 2019, treatment and control rates were highest in South Korea, Canada, and Iceland (treatment >70%; control >50%), followed by the USA, Costa Rica, Germany, Portugal, and Taiwan. Treatment rates were less than 25% for women and less than 20% for men in Nepal, Indonesia, and some countries in sub-Saharan Africa and Oceania. Control rates were below 10% for women and men in these countries and for men in some countries in north Africa, central and south Asia, and eastern Europe. Treatment and control rates have improved in most countries since 1990, but we found little change in most countries in sub-Saharan Africa and Oceania. Improvements were largest in high-income countries, central Europe, and some upper-middle-income and recently high-income countries including
Background Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019.Methods 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10-14 and 50-54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed agespecific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. FindingsThe global TFR decreased from 2•72 (95% uncertainty interval [UI] 2•66-2•79) in 2000 to 2•31 (2•17-2•46) in 2019. Global annual livebirths increased from 134•5 million (131•5-137•8) in 2000 to a peak of 139•6 million (133•0-146•9) in 2016. Global livebirths then declined to 135•3 million (127•2-144•1) in 2019. Of the 204 countries and territories included in...
Noncommunicable diseases (NCDs) account for 76% of deaths in Iran, and this number is on the rise, in parallel with global rates. Many risk factors associated with NCDs are preventable; however, it is first necessary to conduct observational studies to identify relevant risk factors and the most appropriate approach to controlling them. Iran is a multiethnic country; therefore, in 2014 the Ministry of Health and Medical Education launched a nationwide cohort study-Prospective Epidemiological Research Studies in Iran (PERSIAN)-in order to identify the most prevalent NCDs among Iran's ethnic groups and to investigate effective methods of prevention. The PERSIAN study consists of 4 population-based cohorts; the adult component (the PERSIAN Cohort Study), described in this article, is a prospective cohort study including 180,000 persons aged 35-70 years from 18 distinct areas of Iran. Upon joining the cohort, participants respond to interviewer-administered questionnaires. Blood, urine, hair, and nail samples are collected and stored. To ensure consistency, centrally purchased equipment is sent to all sites, and the same team trains all personnel. Routine visits and quality assurance/control measures are taken to ensure protocol adherence. Participants are followed for 15 years postenrollment. The PERSIAN study is currently in the enrollment phase; cohort profiles will soon emerge.
Background Oesophageal cancer is a common and often fatal cancer that has two main histological subtypes: oesophageal squamous cell carcinoma and oesophageal adenocarcinoma. Updated statistics on the incidence and mortality of oesophageal cancer, and on the disability-adjusted life-years (DALYs) caused by the disease, can assist policy makers in allocating resources for prevention, treatment, and care of oesophageal cancer. We report the latest estimates of these statistics for 195 countries and territories between 1990 and 2017, by age, sex, and Socio-demographic Index (SDI), using data from the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD). MethodsWe used data from vital registration systems, vital registration-samples, verbal autopsy records, and cancer registries, combined with relevant modelling, to estimate the mortality, incidence, and burden of oesophageal cancer from 1990 to 2017. Mortality-to-incidence ratios (MIRs) were estimated and fed into a Cause of Death Ensemble model (CODEm) including risk factors. MIRs were used for mortality and non-fatal modelling. Estimates of DALYs attributable to the main risk factors of oesophageal cancer available in GBD were also calculated. The proportion of oesophageal squamous cell carcinoma to all oesophageal cancers was extracted by use of publicly available data, and its variation was examined against SDI, the Healthcare Access and Quality (HAQ) Index, and available risk factors in GBD that are specific for oesophageal squamous cell carcinoma (eg, unimproved water source and indoor air pollution) and for oesophageal adenocarcinoma (gastro-oesophageal reflux disease).Findings There were 473 000 (95% uncertainty interval [95% UI] 459 000-485 000) new cases of oesophageal cancer and 436 000 (425 000-448 000) deaths due to oesophageal cancer in 2017. Age-standardised incidence was 5•9 (5•7-6•1) per 100 000 population and age-standardised mortality was 5•5 (5•3-5•6) per 100 000. Oesophageal cancer caused 9•78 million (9•53-10•03) DALYs, with an age-standardised rate of 120 (117-123) per 100 000 population. Between 1990 and 2017, age-standardised incidence decreased by 22•0% (18•6-25•2), mortality decreased by 29•0% (25•8-32•0), and DALYs decreased by 33•4% (30•4-36•1) globally. However, as a result of population growth and ageing, the total number of new cases increased by 52•3% (45•9-58•9), from 310 000 (300 000-322 000) to 473 000 (459 000-485 000); the number of deaths increased by 40•0% (34•1-46•3), from 311 000 (301 000-323 000) to 436 000 (425 000-448 000); and total DALYs increased by 27•4% (22•1-33•1), from 7•68 million (7•42-7•97) to 9•78 million (9•53-10•03). At the national level, China had the highest number of incident cases (235 000 [223 000-246 000]), deaths (213 000 [203 000-223 000]), and DALYs (4•46 million [4•25-4•69]) in 2017. The highest national-level agestandardised incidence rates in 2017 were observed in Malawi (23•0 [19•4-26•5] per 100 000 population) and Mongolia (18•5 [16•4-20•8] per 100 000). In 2017, age-standardis...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.