Implant-retained mandibular ball-supported and bar-supported overlay dentures are the two most common treatment options for the edentulous mandible. The superior option in terms of strain distribution should be determined. The three-dimensional model of mandible (based on computerized tomography scan) and its overlying implant-retained bar-supported and ball-supported overlay dentures were simulated using SolidWorks, NURBS, and ANSYS Workbench. Loads A (60 N) and B (60 N) were exerted, respectively, in protrusive and laterotrusive motions, on second molar mesial, first molar mesial, and first premolar. The strain distribution patterns were assessed on (1) implant tissue, (2) first implant-bone, and (3) second implant-bone interfaces. Protrusive: Strain was mostly detected in the apical of the fixtures and least in the cervical when bar design was used. On the nonworking side, however, strain was higher in the cervical and lower in the apical compared with the working side implant. Laterotrusive: The strain values were closely similar in the two designs. It seems that both designs are acceptable in terms of stress distribution, although a superior pattern is associated with the application of bar design in protrusive motion.
Objectives: This study aimed to compare the optical properties of Zolid FX, Katana UTML, and lithium disilicate laminate veneers. Materials and Methods: In this in-vitro experimental study, the maxillary left lateral incisor of a phantom received a laminate veneer preparation. An impression was made, and a die was fabricated using dental stone. The die was scanned using a computer-aided design/computer-aided manufacturing scanner. Ten dies were fabricated from each of the A1, A2, and A3 shades of composite resin. Laminate veneers were fabricated using A1 shade of Katana UTML, Zolid FX, and IPS e.max CAD ceramics (n=10) and placed on composite abutments using bleach and white colors of trial insertion paste (TIP). The optical properties were measured at the incisal, middle, and cervical thirds using a spectrophotometer. Data were analyzed using three-way analysis of variance and Tukey’s test. Results: The effect of laminate material on the L*, a*, and b* parameters was significant in all areas (P<0.001), except for the L* parameter in the middle and cervical thirds. All color parameters were affected by TIP color in all three regions in most samples (P<0.05). The effect of composite abutment shade was also significant in most cases (P<0.05). The effect of laminate material, abutment shade, and TIP color on the b* parameter was significant (P<0.001). The L* parameter was almost the same in the two zirconia and lithium disilicate ceramic groups. Conclusion: The composite abutment shade, TIP color, and laminate material should be carefully selected to achieve optimal aesthetics in laminate veneers.
Purpose This study aimed to compare the accuracy of 3-dimensional (3D) printed models derived from multidetector computed tomography (MDCT) and cone-beam computed tomography (CBCT) systems with different fields of view (FOVs). Materials and Methods Five human dry mandibles were used to assess the accuracy of reconstructions of anatomical landmarks, bone defects, and intra-socket dimensions by 3D printers. The measurements were made on dry mandibles using a digital caliper (gold standard). The mandibles then underwent MDCT imaging. In addition, CBCT images were obtained using Cranex 3D and NewTom 3G scanners with 2 different FOVs. The images were transferred to two 3D printers, and the digital light processing (DLP) and fused deposition modeling (FDM) techniques were used to fabricate the 3D models, respectively. The same measurements were also made on the fabricated prototypes. The values measured on the 3D models were compared with the actual values, and the differences were analyzed using the paired t-test. Results The landmarks measured on prototypes fabricated using the FDM and DLP techniques based on all 4 imaging systems showed differences from the gold standard. No significant differences were noted between the FDM and DLP techniques. Conclusion The 3D printers were reliable systems for maxillofacial reconstruction. In this study, scanners with smaller voxels had the highest precision, and the DLP printer showed higher accuracy in reconstructing the maxillofacial landmarks. It seemed that 3D reconstructions of the anterior region were overestimated, while the reconstructions of intra-socket dimensions and implant holes were slightly underestimated.
Background:Numerous factors have an effect on the accuracy of an impression and resultant cast, and these include: impression material, impression technique, tray selection, impression disinfection, storage time of impression before pouring, stone type used for fabrication of cast. Up to now, there has been little research conducted on the effect of contact time of a cast with an impression, on the dimensional stability of a cast. Objectives: The purpose of this study was to evaluate the effect of the contact time of silicone impression materials with stone casts, on the dimensional stability of resultant casts. Materials and Methods: A total of 44 impressions were made from a stainless steel master model, with each one of two silicone impression materials (Elite HD+ and Speedex), and poured with Elite Master Type IV. The thickness of the light-body material (1 mm) was provided by using four copings. The resulting casts from each material were placed in four groups (n = 11) after each contact time with the impression (1 hour, 24 hours, 48 hours, 1 week). Distance between anterior and posterior abutments was measured for the casts and master model. Data were analyzed by two-way analysis of variance and a Tukey test. Results:The relationship between the dimensional stability of the casts and the simultaneous effect of the impression material and contact time of the cast with the impression was not statistically significant (P = 0.099). Type of impression material on the dimensional stability of the cast had no significant effect (P = 0.163). Increased contact time of the cast with the impression resulted in increased dimensional change (P < 0.001). Conclusions: Dimensional stability of the casts after different contact time with the impression was acceptable. The best time to separate the cast from the impression was one hour after pouring the impression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.