International audienceThis paper tries to summarize recent results on the controllability of systems of (several) parabolic equations. The emphasis is placed on the extension of the Kalman rank condition (for finite dimensional systems of differential equations) to parabolic systems. This question is itself tied with the proof of global Carleman estimates for systems and leads to a wide field of open problems
International audienceThis paper is devoted to prove the controllability to trajectories of a system of $n$ one-dimensional parabolic equations when the control is exerted on a part of the boundary by means of $m$ controls. We give a general \textit{Kalman condition} (necessary and sufficient) and also present a construction and sharp estimates of a biothorgonal family in $L^{2}(0,T; \C)$ to $\{ t^{j}e^{-\Lambda_{k}t}\}$.Cet article a pour but de démontrer la contrôlabilité des trajectoires d’un système de $n$ équations paraboliques en une dimension d’espace par $m$ contrôles exercés sur une partie du bord. On obtient une condition de Kalman (nécessaire et suffisante). La démonstration passe par la construction dans $L^{2}(0,T; \C)$ d’une famille biorthogonale de la suite $\{ t^{j}e^{-\Lambda_{k}t}\}$ et par une estimation de la norme de ses éléments
We present a generalization of the Kalman rank condition to the case of n×n linear parabolic systems with constant coefficients and diagonalizable diffusion matrix. To reach the result, we are led to prove a global Carleman estimate for the solutions of a scalar 2n−order parabolic equation and deduce from it an observability inequality for our adjoint system.
AMS 2000 subject classification: 93B05, 93B07, 35K05, 35K55, 35R30.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.