Purpose
This paper aims to propose an automatic imaging network design to improve the efficiency and accuracy of automated construction progress monitoring. The proposed method will address two shortcomings of the previous studies, including the large number of captured images required and the incompleteness and inaccuracy of generated as-built models.
Design/methodology/approach
Using the proposed method, the number of required images is minimized in two stages. In the first stage, the manual photogrammetric network design is used to decrease the number of camera stations considering proper constraints. Then the image acquisition is done and the captured images are used to generate 3D points cloud model. In the second stage, a new software for automatic imaging network design is developed and used to cluster and select the optimal images automatically, using the existing dense points cloud model generated before, and the final optimum camera stations are determined. Therefore, the automated progress monitoring can be done by imaging at the selected camera stations to produce periodic progress reports.
Findings
The achieved results show that using the proposed manual and automatic imaging network design methods, the number of required images is decreased by 65 and 75 per cent, respectively. Moreover, the accuracy and completeness of points cloud reconstruction is improved and the quantity of performed work is determined with the accuracy, which is close to 100 per cent.
Practical implications
It is believed that the proposed method may present a novel and robust tool for automated progress monitoring using unmanned aerial vehicles and based on photogrammetry and computer vision techniques. Using the proposed method, the number of required images is minimized, and the accuracy and completeness of points cloud reconstruction is improved.
Originality/value
To generate the points cloud reconstruction based on close-range photogrammetry principles, more than hundreds of images must be captured and processed, which is time-consuming and labor-intensive. There has been no previous study to reduce the large number of required captured images. Moreover, lack of images in some areas leads to an incomplete or inaccurate model. This research resolves the mentioned shortcomings.
The high cost of land across urban areas has made the excavation a typical practice to construct multiple underground stories. Various methods have been used to restrain the excavated walls and keep them from a possible collapse, including nailing and anchorage. The excavated wall monitoring, especially during the drilling and restraining operations, is necessary for preventing the risk of such incidents as an excavated wall collapse. In the present research, an unmanned aerial vehicle (UAV) photogrammetry-based algorithm was proposed for accurate, fast and low-cost monitoring of excavated walls. Different stages of the proposed methodology included design of the UAV photogrammetry network for optimal imaging, local feature extraction from the acquired images, a special optimal matching method and finally, displacement estimation through a combined adjustment method. Results of implementations showed that, using the proposed methodology, one can achieve a precision of ±7 mm in positioning local features on the excavated walls. Moreover, the wall displacement could be measured at an accuracy of ±1 cm. Having high flexibility, easy implementation, low cost and fast pace; the proposed methodology provides an appropriate alternative to micro-geodesic procedures and the use of instrumentations for excavated wall displacement monitoring.
The modeling of small-scale objects is used in different applications such as medicine, industry, and cultural heritage. The capability of modeling small-scale objects using imaging with the help of hand USB digital microscopes and use of videogrammetry techniques has been implemented and evaluated in this paper. Use of this equipment and convergent imaging of the environment for modeling, provides an appropriate set of images for generation of three-dimensional models. The results of the measurements made with the help of a microscope micrometer calibration ruler have demonstrated that self-calibration of a hand camera-microscope set can help obtain a three-dimensional detail extraction precision of about 0.1 millimeters on small-scale environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.