SUMMARY
Epigenetic and epitranscriptomic networks have important functions in maintaining pluripotency of embryonic stem cells (ESCs) and somatic cell reprogramming. However the mechanisms integrating the actions of these distinct networks are only partially understood. Here, we show that the chromatin-associated zinc finger protein 217 (ZFP217) coordinates epigenetic and epitranscriptomic regulation. ZFP217 interacts with several epigenetic regulators, activates transcription of key pluripotency genes, and modulates N6-methyladenosine (m6A) deposition on their transcripts by sequestering the enzyme m6A methyltransferase-like 3 (METTL3). Consistently, Zfp217 depletion compromises ESC self-renewal and somatic cell reprogramming, globally increases m6A RNA levels, and enhances m6A modification of Nanog, Sox2, Klf4, and c-Myc mRNAs, promoting their degradation. ZFP217 binds its own target gene mRNAs, which are also METTL3-associated, and is enriched at promoters of m6A-modified transcripts. Collectively, these findings shed light on how a transcription factor can tightly couple gene transcription to m6A RNA modification to insure ESC identity.
We present the MALDI-TOF/TOF-MS analyses of various hapten-bovine serum albumin (BSA) neoglycoconjugates obtained by squaric acid chemistry coupling of the spacer-equipped, terminal monosaccharide of the O-specific polysaccharide of Vibrio cholerae O1, serotype Ogawa, to BSA. These analyses allowed not only to calculate the molecular masses of the hapten-BSA neoglycoconjugates with different hapten-BSA ratios (4.3, 6.6 and 13.2) but, more importantly, also to localize the covalent linkages (conjugation sites) between the hapten and the carrier protein. Determination of the site of glycation was based on comparison of the MALDI-TOF/TOF-MS analysis of the peptides resulting from the digestion of BSA with similar data resulting from the digestion of BSA glycoconjugates, followed by sequencing by MALDI-TOF/TOF-MS/MS of the glycated peptides. The product-ion scans of the protonated molecules were carried out with a MALDI-TOF/TOF-MS/MS tandem mass spectrometer equipped with a high-collision energy cell. The high-energy collision-induced dissociation (CID) spectra afforded product ions formed by fragmentation of the carbohydrate hapten and amino acid sequences conjugated with fragments of the carbohydrate hapten. We were able to identify three conjugation sites on lysine residues (Lys235, Lys437 and Lys455). It was shown that these lysine residues are very reactive and bind lysine specific reagents. We presume that these Lys residues belong to those that are considered to be sterically more accessible on the surface of the tridimensional structure. The identification of the y-series product ions was very useful for the sequencing of various peptides. The series of a- and b-product ions confirmed the sequence of the conjugated peptides.
We present herein an efficient mass spectrometric method for the localization of the glycation sites of a model neoglycoconjugate vaccine formed by a construct of the tetrasaccharide side chain of the Bacillus anthracis exosporium and the protein carrier bovine serum albumin. The glycoconjugate was digested with both trypsin and GluC V8 endoproteinases, and the digests were then analyzed by MALDI-TOF/TOF-CID-MS/MS and nano-LC-ESI-QqTOF-CID-MS/MS. The sequences of the unknown peptides analyzed by MALDI-TOF/TOF-CID-MS/MS, following digestion with the GluC V8 endoproteinase, allowed us to recognize three glycopeptides whose glycation occupancies were, respectively, on Lys 235, Lys 420, and Lys 498. Similarly, the same analysis was performed on the tryptic digests, which permitted us to recognize two glycation sites on Lys 100 and Lys 374. In addition, we have also used LC-ESI-QqTOF-CID-MS/MS analysis for the identification of the tryptic digests. However, this analysis identified a higher number of glycopeptides than would be expected from a glycoconjugate composed of a carbohydrate–protein ratio of 5.4:1, which would have resulted in glycation occupancies of 18 specific sites. This discrepancy was due to the large number of glycoforms formed during the synthetic carbohydrate–spacer–carrier protein conjugation. Likewise, the LC-ESI-QqTOF-MS/MS analysis of the GluC V8 digest also identified 17 different glycation sites on the synthetic glycoconjugate.
We have identified compounds obtained from the SARA fractions of bitumen by using atmospheric pressure photoionization mass spectrometry and low-energy collision tandem mass spectrometric analyses with a QqToF-MS/MS hybrid instrument. The identified compounds were isolated from the maltene saturated oil and the aromatic fractions of the SARA components of a bitumen. The QqToF instrument had sufficient mass resolution to provide accurate molecular weight information and to enhance the tandem mass spectrometry results. The APPI-QqToF-MS analysis of the separated compounds showed a series of protonated molecules [M + H](+) and molecular ions [M](+▪) of the same mass but having different chemical structures, in the maltene saturated oil and the aromatic SARA fractions. These isobaric ions were a molecular ion [M2 ](+▪) at m/z 418.2787 and a protonated molecule [M5 + H](+) at m/z 287.1625 in the saturated oil fraction, and molecular ions [M6 ](+▪) at m/z 418.1584 and [M7 ](+▪) at m/z 287.1285 in the aromatic fraction. The identification of this series of chemical compounds was achieved by performing CID-MS/MS analyses of the molecular ions [M](+▪) ([M1 ](+▪) at m/z 446. 2980, [M2 ](+▪) at m/z 418.2787, [M3 ](+▪) at m/z 360.3350 and [M4 ](+▪) at m/z 346.2095) in the saturated oil fraction and of the [M5 + H](+) ion at m/z 287.1625 also in the saturated oil fraction. The observed CID-MS/MS fragmentation differences were explained by proposed different breakdown processes of the precursor ions. The presented tandem mass spectrometric study shows the capability of MS/MS experiments to differentiate between different classes of chemical compounds of the SARA components of bitumen and to explain the reasons for the observed mass spectrometric differences. However, greater mass resolution than that provided by the QqToF-MS/MS instrument would be required for the analysis of the asphaltene fraction of bitumen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.