Most applied indoor localization is based on distance and fingerprint techniques. The distance-based technique converts specific parameters to a distance, while the fingerprint technique stores parameters as the fingerprint database. The widely used Internet of Things (IoT) technologies, e.g., Wi-Fi and ZigBee, provide the localization parameters, i.e., received signal strength indicator (RSSI). The fingerprint technique advantages over the distance-based method as it straightforwardly uses the parameter and has better accuracy. However, the burden in database reconstruction in terms of complexity and cost is the disadvantage of this technique. Some solutions, i.e., interpolation, image-based method, machine learning (ML)-based, have been proposed to enhance the fingerprint methods. The limitations are complex and evaluated only in a single environment or simulation. This paper proposes applying classical interpolation and regression to create the synthetic fingerprint database using only a relatively sparse RSSI dataset. We use bilinear and polynomial interpolation and polynomial regression techniques to create the synthetic database and apply our methods to the 2D and 3D environments. We obtain an accuracy improvement of 0.2m for 2D and 0.13m for 3D by applying the synthetic database. Adding the synthetic database can tackle the sparsity issues, and the offline fingerprint database construction will be less burden. Doi: 10.28991/esj-2021-SP1-012 Full Text: PDF
The classical rang-based technique for position estimation is still reliably used for indoor localization. Trilateration and multilateration, which include three or more references to locate the indoor object, are two common examples. These techniques use at least three intersection-locations of the references' distance and conclude that the intersection is the object's position. However, some challenges have appeared when using a simple power-to-distance parameter, i.e., received signal strength indicator (RSSI). RSSI is known for its fluctuated values when used as the localization parameter. The improvement of classical range-based has been proposed, namely min-max and iRingLA algorithms. These algorithms or methods use the approximation in a bounding-box and rings for min-max and iRingLA, respectively. This paper discusses the comparison performance of min-max and iRingLA with multilateration as the classical method. We found that min-max gives the best performance, and in some positions, iRingLA gives the best accuracy error. Hence, the approximation method can be promising for indoor localization, especially when using a simple and straightforward RSSI parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.