This study involves the adsorption of Crystal Violet (CV) dye adsorbed from solution on the pyrophyllite's surface. The batch technique was used under a variety of conditions to produce quantitative adsorption, namely amount of adsorbent, dye concentration, contact time, pH solution and temperature. The maximum adsorption capacity of Crystal Violet on pyrophyllite was 9.58 mg/g for 10 mg/L of CV concentration, pH = 6.8 at a temperature 20°C and 1 g/L of adsorbent. This study of adsorption kinetics was carried out within framework of three models: intraparticle diffusion, pseudo-first order and pseudo-second order. The experimental isotherm data were analyzed using Langmuir and Freundlich models. Different thermodynamic parameters have shown spontaneous reaction with endothermic nature (The estimated value for DG was À7.64 kJ/mol at 293 K). Various techniques for characterizing the adsorbent were applied including X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) coupled by energy dispersive X-ray spectroscopy (EDX). In addition, the regenerated adsorbents technique was reused several times; this demonstrated an economical aspect of using pyrophyllite which underlines the re-use importance considering the material capacity to regenerate.
This study investigates the possibility of applying an adsorption process using two abundant natural minerals M1 and M2. Without pretreatment or activation, the adsorbents were used to treat real textile wastewater samples (collected from Fez city, Morocco). As a cost-effective alternative, these materials were characterized by different analyses, including X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray fluorescence (XRF). Chemical oxygen demand (COD) and biological oxygen demand (BOD) were used to characterize the textile wastewater. Additionally, the influence of operating conditions (contact time, adsorbent dosages, and pH) was evaluated. Results show that the adsorption process takes place quickly, reaching the equilibrium at 90 and 160 min for M1 (88% COD) and M2 (79% COD). Both materials show a higher affinity to Cr (39%) and lower affinity to Cu (28%). A pseudo-second-order kinetic model provides the best fit to the experimental adsorption data. Germination tests indicate a low toxicity after the adsorption process. Performance of both materials was compared with that of other literature studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.