The use of rare earth elements is a growing trend in diverse industrial activities, leading to the need for eco-friendly approaches to their efficient recovery and reuse. The aim of this work is the development of an environmentally friendly and competitive technology for the recovery of those elements from wastewater. Kinetic and equilibria batch assays were performed with zeolite, with and without bacterial biofilm, to entrap rare earth ions from aqueous solution. Continuous assays were also performed in column setups. Over 90% removal of lanthanum and cerium was achieved using zeolite as sorbent, with and without biofilm, decreasing to 70% and 80%, respectively, when suspended Bacillus cereus was used. Desorption from the zeolite reached over 60%, regardless of the tested conditions. When in continuous flow in columns, the removal yield was similar for all of the rare earth elements tested. Lanthanum and cerium were the elements most easily removed by all tested sorbents when tested in single- or multi-solute solutions, in batch and column assays. Rare earth removal from wastewater in open setups is possible, as well as their recovery by desorption processes, allowing a continuous mode of operation.
Over the last decades, the production and consumption of pharmaceuticals and health care products grew manifold, allowing an increase in life expectancy and a better life quality for humans and animals, in general. However, the growth in pharmaceuticals production and consumption comes with an increase in waste production, which creates a number of challenges as well as opportunities for the waste management industries. The conventional current technologies used to treat effluents have shown to be inefficient to remove or just to reduce the concentrations of these types of pollutants to the legal limits. The present review provides a thorough state-of-the-art overview on the use of biological processes in the rehabilitation of ecosystems contaminated with the pharmaceutical compounds most commonly detected in the environment and eventually more studied by the scientific community. Among the different biological processes, special attention is given to biosorption and biodegradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.