The examination of tissue histology by light microscopy is a fundamental tool for investigating the structure and function of organs under normal and disease states. Many current techniques for tissue sectioning, imaging and analysis are time-consuming, and they present major limitations for 3D tissue reconstruction. The introduction of methods to achieve the optical clearing and subsequent light-sheet laser scanning of entire transparent organs without sectioning represents a major advance in the field. We recently developed a highly reproducible and versatile clearing procedure called 3D imaging of solvent-cleared organs, or 3DISCO, which is applicable to diverse tissues including brain, spinal cord, immune organs and tumors. Here we describe a detailed protocol for performing 3DISCO and present its application to various microscopy techniques, including example results from various mouse tissues. The tissue clearing takes as little as 3 h, and imaging can be completed in ∼45 min. 3DISCO is a powerful technique that offers 3D histological views of tissues in a fraction of the time and labor required to complete standard histology studies.
An imaging technique lets scientists peer through the skin of a whole mouse or rat to examine its organs after death. Ali Ertürk of the Ludwig Maximilians University of Munich in Germany and his colleagues created a technique called ultimate DISCO (uDISCO), which removes pigments and lipids from the tissues of dead animals using an organic solvent. This leaves the organs and skin intact but transparent, while preserving genetically encoded fluorescent proteins. The method revealed the nervous system of a mouse in stark detail. uDISCO also shrinks bodies by up to 65%, making it possible to image whole animals using light-sheet microscopy, which excels at imaging smaller samples. Nature Methods http://dx.
Hypertrophic scarring and poor intrinsic axon growth capacity constitute major obstacles for spinal cord repair. These processes are tightly regulated by microtubule dynamics. We found that moderate microtubule stabilization decreased scar formation after spinal cord injury (SCI) in rodents via various cellular mechanisms, including dampening of TFG-β signalling. It prevented the accumulation of chondroitin sulfate proteoglycans (CSPGs) and rendered the lesion site permissive for axon regeneration of growth competent sensory neurons. Additionally, microtubule stabilization promoted growth of CNS axons of the Raphe-spinal tract and led to functional improvement. Thus, microtubule stabilization reduces fibrotic scarring and enhances the capacity of axons to grow. Manipulation of microtubules may offer the basis for a multi-targeted therapy after SCI.
After central nervous system (CNS) injury, inhibitory factors in the lesion scar and a poor axon growth potential prevent axon regeneration. Microtubule stabilization reduces scarring and promotes axon growth. However, the cellular mechanisms of this dual effect remain unclear. Here, delayed systemic administration of a blood-brain barrier permeable microtubule stabilizing drug, epothilone B, decreased scarring after rodent spinal cord injury (SCI) by abrogating polarization and directed migration of scar-forming fibroblasts. Conversely, epothilone B reactivated neuronal polarization by inducing concerted microtubule polymerization into the axon tip, which propelled axon growth through an inhibitory environment. Together, these drug elicited effects promoted axon regeneration and improved motor function after SCI. With recent clinical approval, epothilones hold promise for clinical use after CNS injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.