Background Drought tolerance is a crucial trait for crops to curtail the yield loss inflicted by water stress to crops, yet genetic improvement efforts are challenged by the complexity of this character. The adaptation of sorghum to abiotic stress, its genotypic variability, and relatively small genome make this species well-suited to dissect the molecular basis of drought tolerance. One efficient approach to this question is the use of differential transcriptome analysis, which provides a snapshot of the processes underlying drought response as well as genes that might be determinants of the drought tolerance trait. Results RNA sequencing was used to compare the transcriptome profiles of two sorghum lines, the drought-tolerant SC56 and the drought-sensitive Tx7000. The differential expression analysis revealed unambiguous genotypic disparities, including a massive increase of upregulated transcripts in SC56. Concomitantly, gene ontology enrichment showed that SC56 biologically outperformed Tx7000 in wet conditions, since it upregulated processes driving growth and guaranteeing homeostasis. The drought tolerance of SC56 seems to be an intrinsic trait that occurs through the overexpression of stress tolerance genes in wet conditions, notably those acting in defense against oxidative stress (SOD1, SOD2, VTC1, MDAR1, MSRB2, and ABC1K1). Under drought conditions, SC56 enhanced its transmembrane transport and maintained growth-promoting mechanisms similar to those implemented under wet conditions. SC56 also appears to preserve its biological function, in a limiting environment, by relying on reported validated stress tolerance genes that heighten the antioxidant capacity (SOD1, RCI3, VTE1, UCP1, FD1, and FD2), regulatory factors (CIPK1 and CRK7), and repressors of premature senescence (SAUL1). Of the stress tolerance genes overexpressed under both wet and drought conditions, DHAR2 might be a key determinant of drought tolerance since its role in recycling ascorbic acid was described to be directly linked to protection against reactive oxygen species-mediated damage, positive effects on photosynthetic activity, higher rate of plant growth, and delayed leaf aging. Conclusion The differential expression analysis uncovered biological processes which upregulation enables SC56 to be a better accumulator of biomass and connects the drought tolerance trait to key stress tolerance genes, making this genotype a judicious choice for isolation of tolerance genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.