Using artificial intelligence and machine learning techniques in healthcare applications has been actively researched over the last few years. It holds promising opportunities as it is used to track human activities and vital signs using wearable devices and assist in diseases’ diagnosis, and it can play a great role in elderly care and patient’s health monitoring and diagnostics. With the great technological advances in medical sensors and miniaturization of electronic chips in the recent five years, more applications are being researched and developed for wearable devices. Despite the remarkable growth of using smart watches and other wearable devices, a few of these massive research efforts for machine learning applications have found their way to market. In this study, a review of the different areas of the recent machine learning research for healthcare wearable devices is presented. Different challenges facing machine learning applications on wearable devices are discussed. Potential solutions from the literature are presented, and areas open for improvement and further research are highlighted.
Decentralized cryptocurrencies have gained a lot of attention over the last decade. Bitcoin was introduced as the first cryptocurrency to allow direct online payments without relying on centralized financial entities. The use of Bitcoin has vastly grown as a financial asset rather than just a tool for online payments. A lot of cryptocurrencies have been created since 2011 with Bitcoin dominating the cryptocurrencies' market. With plenty of cryptocurrencies being used as financial assets and with millions of trades being executed through different exchange services, cryptocurrencies are susceptible to trading problems and challenges similar to those traditionally encountered in the financial domain. Price and trend prediction, volatility prediction, portfolio construction and fraud detection are some examples related to trading. In addition, there are other challenges that are specific to the domain of cryptocurrencies such as mining, cybersecurity, anonymity and privacy. In this paper, we survey the application of artificial intelligence techniques to address these challenges for cryptocurrencies with their vast amount of daily transactions, trades and news that are beyond human capabilities to analyze and learn from. This paper discusses the recent research work done in this emerging area and compares them in terms of used techniques and datasets. It also highlights possible research gaps and some potential areas for improvement.
With the ongoing advances in sensor technology and miniaturization of electronic chips, more applications are researched and developed for wearable devices. Hydration monitoring is among the problems that have been recently researched. Athletes, battlefield soldiers, workers in extreme weather conditions, people with adipsia who have no sensation of thirst, and elderly people who lost their ability to talk are among the main target users for this application. In this paper, we address the use of machine learning for hydration monitoring using data from wearable sensors: accelerometer, magnetometer, gyroscope, galvanic skin response sensor, photoplethysmography sensor, temperature, and barometric pressure sensor. These data, together with new features constructed to reflect the activity level, were integrated with personal features to predict the last drinking time of a person and alert the user when it exceeds a certain threshold. The results of applying different models are compared for model selection for on-device deployment optimization. The extra trees model achieved the least error for predicting unseen data; random forest came next with less training time, then the deep neural network with a small model size, which is preferred for wearable devices with limited memory. Embedded on-device testing is still needed to emphasize the results and test for power consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.