The seismic design and assessment of steel moment resisting frames (SMRFs) rely heavily on drifts. It is unsurprising, therefore, that several simplified methods have been proposed to predict lateral deformations in SMRFs, ranging from the purely mechanics‐based to the wholly data‐driven, which aim to alleviate the structural engineer's burden of conducting detailed nonlinear analyses either as part of preliminary design iterations or during regional seismic assessments. While many of these methods have been incorporated in design codes or are commonly used in research, they all suffer from a lack of consideration of the causal link between the seismic hazard level and the ground‐motion suite used for their formulation. In this paper, we propose hybrid data‐driven models that preserve this critical relationship of hazard‐consistency. To this end, we assemble a large database of non‐linear response history analyses (NRHA) on 24 SMRFs of different structural characteristics. These structural models are subjected to 816 ground‐motion records whose occurrence rates and spectral shapes are selected to ensure the hazard consistency of our outputs. Two sites with different seismic hazards are examined to enable comparisons under different seismic demands. An initial examination of the resulting drift hazard curves allows us to re‐visit the influence of salient structural modelling assumptions such as plastic resistance, geometric configurations and joint deterioration modelling. This is followed by a machine learning (ML)‐guided feature selection process that considers structural and seismic parameters as well as key static response features, hence the hybrid nature of our models. New models for inter‐storey drift and roof displacements are then developed. A comparison with currently available formulations highlights the significant levels of overestimation associated with previously proposed non‐hazard consistent models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.