Here, a novel control strategy based on sliding mode control for the single‐stage boost inverter is presented. The goal is to achieve a system with robustness against inherent delays and variations in parameters, fast response, and high‐quality AC voltage. Therefore, according to the idea of current‐mode control, a new type of dynamic sliding mode control (DSMC) is proposed to improve the response performance on various input and parameter operation conditions. In comparison with the conventional controllers, the proposed DSMC utilized only a single loop while presenting attractive features such as robustness against parametric uncertainties and input delay by definition new sliding surfaces. Furthermore, the proposed system has a fast and chattering‐free response, provides an appropriate steady‐state error, good total harmonic distortion (THD), while its implementation is very simple. In a fair comparison with conventional sliding mode control, simulations and laboratory experiments verified satisfactory performance and effectiveness of the DSMC method.
In this paper, the problem of control a single-stage boost inverter is studied. The goal is to achieve a system with robustness against variations in parameters, fast response, high-quality AC voltage, and smooth DC current. To this end, a new type of dynamic sliding mode control is proposed to apply to various scenarios such as parameter uncertainties and DC input voltages. In comparison with the conventional double-loop controllers, the proposed sliding mode controller utilizes only a single loop in its design, while having attractive features such as robustness against parametric uncertainties. In addition, a methodology is proposed for the decoupling of double-frequency power ripples based on proportional-resonant (PR) control to remove the low-frequency current ripples without using additional power components. Compared to conventional controllers, the proposed controller provides several features such as fast and chattering-free response, robustness against uncertainty in the parameters, smooth control, proper steady-state error, decoupled power and good total harmonic distortion (THD) over the output voltage and input currents, and simple implementation. In a fair comparison with classical sliding mode control, simulation results demonstrate more satisfactory performance and effectiveness of the proposed control method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.