Bone tissue engineering is a dominating approach for the fabrication of nanocomposite bone implants with superior biocompatibility and low toxicity to the surrounding tissues. Here, in this report ternary nanocomposites integrating nanohydroxyapatite/κ‐carrageenan/silica doped polyvinyl alcohol in three different ratios, that is, 60/30/10 (HCP1), 60/20/20 (HCP2), and 60/10/30 (HCP3) was constructed and a binary system comprised of nanohydroxyapatite and κ‐carrageenan was also prepared for analyzing and comparing their bone regeneration potential. The samples were characterized by various physico‐chemical techniques such as infra‐red spectroscopy, which furnished details about structural functionalities and complex formation. Rough surface morphology and dispersed particle size distribution of developed nanocomposites were revealed by scanning electron microscopy and electron transmission microscopy, respectively. Thermogravimetric analysis and differential temperature analysis revealed higher thermal stability of HCP3 nanocomposite with total weight loss of 10% and X‐ray diffraction analysis revealed average crystallite size of 15 nm for HCP3 nanocomposite. Bioactivity and biocompatibility of fabricated nanocomposites were deduced with the help of biological techniques. HCP3 manifested cell viability above 100% at 2 μg/mL concentration and exhibited hemolysis below 3% at all tested concentration favoring cell growth with minimum cytotoxicity. HCP3 also exhibited efficient apatite layer deposition, optimum swelling ability and improved biodegradability (~30%) and anti‐bacterial activity predicting it as a promising nanocomposite implant for future orthopedic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.