Metabolic syndrome (MetS) consists of several medical conditions that collectively predict the risk for cardiovascular disease better than the sum of individual conditions. The risk of developing MetS in human depends on synergy of both genetic and environmental factors. Being a multifactorial condition with alarming rate of prevalence nowadays, establishment of appropriate experimental animal models mimicking the disease state in humans is crucial in order to solve the difficulties in evaluating the pathophysiology of MetS in human. This review aims to summarize the underlying mechanisms involved in the pathophysiology of dietary, genetic, and pharmacological models of MetS. Furthermore, we will discuss the usefulness, suitability, pros and cons of these animal models. Even though numerous animal models of MetS have been established, further investigations on the invention of new animal model and clarification of plausible mechanisms are still necessary to confer a better understanding to researchers on the selection of animal models for their studies.
Metabolic syndrome (MetS) and osteoporosis are two major healthcare problems worldwide. Metabolic syndrome is a constellation of medical conditions consisting of central obesity, hyperglycemia, hypertension, and dyslipidemia, in which each acts on bone tissue in different ways. The growing prevalence of MetS and osteoporosis in the population along with the controversial findings on the relationship between both conditions suggest the importance for further investigation and discussion on this topic. This review aims to assess the available evidence on the effects of each component of MetS on bone metabolism from the conventional to the contemporary. Previous studies suggested that the two conditions shared some common underlying pathways, which include regulation of calcium homeostasis, receptor activator of NF-κB ligand (RANKL)/receptor activator of the NF-κB (RANK)/osteoprotegerin (OPG) and Wnt-β-catenin signaling pathways. In conclusion, we suggest that MetS may have a potential role in developing osteoporosis and more studies are necessary to further prove this hypothesis.
A constellation of medical conditions inclusive of central obesity, hyperglycemia, hypertension, and dyslipidemia is known as metabolic syndrome (MetS). The safest option in curtailing the progression of MetS is through maintaining a healthy lifestyle, which by itself, is a long-term commitment entailing much determination. A combination of pharmacological and non-pharmacological approach, as well as lifestyle modification is a more holistic alternative in the management of MetS. Vitamin E has been revealed to possess anti-oxidative, anti-inflammatory, anti-obesity, anti-hyperglycemic, anti-hypertensive and anti-hypercholesterolemic properties. The pathways regulated by vitamin E are critical in the development of MetS and its components. Therefore, we postulate that vitamin E may exert some health benefits on MetS patients. This review intends to summarize the evidence in animal and human studies on the effects of vitamin E and articulate the contrasting potential of tocopherol (TF) and tocotrienol (T3) in preventing the medical conditions associated with MetS. As a conclusion, this review suggests that vitamin E may be a promising agent for attenuating MetS.
This study aimed to evaluate the effects of metabolic syndrome (MetS) induced by high-carbohydrate high-fat (HCHF) diet on bone mineral density (BMD), histomorphometry and remodelling markers in male rats. Twelve male Wistar rats aged 12 weeks old were randomized into two groups. The normal group was given standard rat chow while the HCHF group was given HCHF diet to induce MetS. Abdominal circumference, blood glucose, blood pressure, and lipid profile were measured for the confirmation of MetS. Bone mineral density, histomorphometry and remodelling markers were evaluated for the confirmation of bone loss. The HCHF diet caused central obesity, hyperglycaemia, hypertension, and dyslipidaemia in male rats. No significant difference was observed in whole body bone mineral content and BMD between the normal and HCHF rats (p>0.05). For bone histomorphometric parameters, HCHF diet-fed animals had significantly lower osteoblast surface, osteoid surface, osteoid volume, and significantly higher eroded surface; resulting in a reduction in trabecular bone volume (p<0.05). Feeding on HCHF diet caused a significantly higher CTX-1 level (p<0.05), but did not cause any significant change in osteocalcin level compared to normal rats (p>0.05). In conclusion, HCHF diet-induced MetS causes imbalance in bone remodelling, leading to the deterioration of trabecular bone structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.