In this project we set up a human cell-based DNT in vitro testing strategy that is based on test methods with high readiness and data generated therefrom. The methods underwent a fit-for-purpose evaluation that considered four key elements: 1. The test system, 2. the exposure scheme, 3. the assay and analytical endpoint(s) and 4. the classification model. This testing battery was challenged with 119 chemicals for which rich toxicological information was available (for some of them also on their DNT hazard). Testing was performed in 5 test systems measuring 10 DNT-specific endpoints and additional 9 viability/ cytotoxicity-related parameters. For approximately half of the compounds, additional and complementary data from DNT in vitro tests was added by the US-EPA. This extended battery was also evaluated. Testing results revealed that the test methods of this current DNT in vitro battery are reliable and reproducible. The endpoints had to a large extent low redundancy. Battery performance, as assessed with compounds well-characterized for DNT hazard had a sensitivity of 82.7 % and a specificity of 88.2 %. Gap analyses suggested that radial, astro-and microglia as well as myelination endpoints may be added to the battery. Two case studies, one for screening and prioritization of 14 flame retardants, and one on hazard characterization of 2 pesticides, were presented. Hypothetical AOPs were developed based on the latter case study. In conclusion, the DNT testing strategy explored here is a very promising first approach for DNT hazard identification and characterization. The performance is encouraging and may be improved by inclusion of further tests. Some uncertainties in DNT in vitro battery testing outcomes could be reduced by incorporating test data and modelling approaches related to in vitro and in vivo toxicokinetics of test compounds.
Current developmental neurotoxicity (DNT) testing in animals faces major limitations, such as high cost and time demands as well as uncertainties in their methodology, evaluation and regulation. Therefore, the use of human-based 3D in vitro systems in combination with high-content image analysis (HCA) might contribute to DNT testing with lower costs, increased throughput and enhanced predictivity for human hazard identification. Human neural progenitor cells (hNPCs) grown as 3D neurospheres mimic basic processes of brain development including hNPC migration and differentiation and are therefore useful for DNT hazard identification. HCA of migrated neurospheres creates new challenges for automated evaluations because it encompasses variable cell densities, inconsistent z-layers and heterogeneous cell populations. We tackle those challenges with our Omnisphero software, which assesses multiple endpoints of the 'Neurosphere Assay.' For neuronal identification, Omnisphero reaches a true positive rate (TPR) of 83.8 % and a false discovery rate (FDR) of 11.4 %, thus being comparable to the interindividual difference among two researchers (TPR = 94.3, FDR = 11.0 %) and largely improving the results obtained by an existing HCA approach, whose TPR does not exceed 50 % at a FDR above 50 %. The high FDR of existing methods results in incorrect measurements of neuronal morphological features accompanied by an overestimation of compound effects. Omnisphero additionally includes novel algorithms to assess 'neurosphere-specific' endpoints like radial migration and neuronal density distribution within the migration area. Furthermore, a user-assisted parameter optimization procedure makes Omnisphero accessible to non-expert end users.
Food supplements based on herbal products are widely used during pregnancy as part of a self-care approach. The idea that such supplements are safe and healthy is deeply seated in the general population, although they do not underlie the same strict safety regulations than medical drugs. We aimed to characterize the neurodevelopmental effects of the green tea catechin epigallocatechin gallate (EGCG), which is now commercialized as high-dose food supplement. We used the "Neurosphere Assay" to study the effects and unravel underlying molecular mechanisms of EGCG treatment on human and rat neural progenitor cells (NPCs) development in vitro. EGCG alters human and rat NPC development in vitro. It disturbs migration distance, migration pattern, and nuclear density of NPCs growing as neurospheres. These functional impairments are initiated by EGCG binding to the extracellular matrix glycoprotein laminin, preventing its binding to β1-integrin subunits, thereby prohibiting cell adhesion and resulting in altered glia alignment and decreased number of migrating young neurons. Our data raise a concern on the intake of high-dose EGCG food supplements during pregnancy and highlight the need of an in vivo characterization of the effects of high-dose EGCG exposure during neurodevelopment.
Polybrominated diphenyl ethers (PBDEs) are bioaccumulating flame retardants causing developmental neurotoxicity (DNT) in humans and rodents. Their DNT effects are suspected to involve thyroid hormone (TH) signaling disruption. Here, we tested the hypothesis whether disturbance of neural progenitor cell (NPC) differentiation into the oligodendrocyte lineage (O4+ cells) by BDE-99 involves disruption of TH action in human and mouse (h,m)NPCs. Therefore, we quantified differentiation of NPCs into O4+ cells and measured their maturation via expression of myelin-associated genes (hMBP, mMog) in presence and absence of TH and/or BDE-99. T3 promoted O4+ cell differentiation in mouse, but not hNPCs, and induced hMBP/mMog gene expression in both species. BDE-99 reduced generation of human and mouse O4+ cells, but there is no indication for BDE-99 interfering with cellular TH signaling during O4+ cell formation. BDE-99 reduced hMBP expression due to oligodendrocyte reduction, but concentrations that did not affect the number of mouse O4+ cells inhibited TH-induced mMog transcription by a yet unknown mechanism. In addition, ascorbic acid antagonized only the BDE-99-dependent loss of human, not mouse, O4+ cells by a mechanism probably independent of reactive oxygen species. These data point to species-specific modes of action of BDE-99 on h/mNPC development into the oligodendrocyte lineage.
The developing brain is highly vulnerable to the adverse effects of chemicals, resulting in neurodevelopmental disorders in humans. Currently, animal experiments in the rat are the gold standard for developmental neurotoxicity (DNT) testing; however, these guideline studies are insufficient in terms of animal use, time and costs and bear the issue of species extrapolation. Therefore, the necessity for alternative methods that predict DNT of chemicals faster, cheaper and with a high predictivity for humans is internationally agreed on. In this respect, we developed an in vitro model for DNT key event screening, which is based on primary human and rat neural progenitor cells grown as neurospheres. They are able to mimic basic processes of early fetal brain development and enable an investigation of species differences between humans and rodents in corresponding cellular models. The goal of this study was to investigate to what extent human and rat neurospheres were able to correctly predict the DNT potential of a well-characterized training set of nine chemicals by investigating effects on progenitor cell proliferation, migration and neuronal differentiation in parallel to cell viability, and to compare these chemical responses between human and rat neurospheres. We demonstrate that (1) by correlating these human and rat in vitro results to existing in vivo data, human and rat neurospheres classified most compounds correctly and thus may serve as a valuable component of a modular DNT testing strategy and (2) human and rat neurospheres differed in their sensitivity to most chemicals, reflecting toxicodynamic species differences of chemicals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.