Advances in electronics and life sciences have generated interest in "lab-on-a-chip" systems utilizing complementary metal oxide semiconductor (CMOS) circuitry for low-power, portable, and cost-effective biosensing platforms. Here, we present a simple and reliable approach for coating "high-κ" metal oxide dielectric materials with "non-fouling" (protein- and cell-resistant) poly(oligo(ethylene glycol) methyl ether methacrylate (POEGMA) polymer brushes as biointerfacial coatings to improve their relevance for biosensing applications utilizing advanced electronic components. By using a surface-initiated "grafting from" strategy, POEGMA films were reliably grown on each material, as confirmed by ellipsometric measurements and X-ray photoelectron spectroscopy (XPS) analysis. The electrical behavior of these POEGMA films was also studied to determine the potential impact on surrounding electronic devices, yielding information on relative permittivity and breakdown field for POEGMA in both dry and hydrated states. We show that the incorporation of POEGMA coatings significantly reduced levels of nonspecific protein adsorption compared to uncoated high-κ dielectric oxide surfaces as shown by protein resistance assays. These attributes, combined with the robust dielectric properties of POEGMA brushes on high-κ surfaces open the way to incorporate this protein and cell resistant polymer interface into CMOS devices for biomolecular detection in a complex liquid milieu.
Management of breast cancer in limited-resource settings is hindered by a lack of low-cost, logistically sustainable approaches toward molecular and cellular diagnostic pathology services that are needed to guide therapy. To address these limitations, we have developed a multimodal cellphone-based platform—the EpiView-D4—that can evaluate both cellular morphology and molecular expression of clinically relevant biomarkers directly from fine-needle aspiration (FNA) of breast tissue specimens within 1 h. The EpiView-D4 is comprised of two components: (1) an immunodiagnostic chip built upon a “non-fouling” polymer brush-coating (the “D4”) which quantifies expression of protein biomarkers directly from crude cell lysates, and (2) a custom cellphone-based optical microscope (“EpiView”) designed for imaging cytology preparations and D4 assay readout. As a proof-of-concept, we used the EpiView-D4 for assessment of human epidermal growth factor receptor-2 (HER2) expression and validated the performance using cancer cell lines, animal models, and human tissue specimens. We found that FNA cytology specimens (prepared in less than 5 min with rapid staining kits) imaged by the EpiView-D4 were adequate for assessment of lesional cellularity and tumor content. We also found our device could reliably distinguish between HER2 expression levels across multiple different cell lines and animal xenografts. In a pilot study with human tissue (n = 19), we were able to accurately categorize HER2-negative and HER2-positve tumors from FNA specimens. Taken together, the EpiView-D4 offers a promising alternative to invasive—and often unavailable—pathology services and may enable the democratization of effective breast cancer management in limited-resource settings.
Interest in point-of-care diagnostics has led to increasing demand for the development of nanomaterial-based electronic biosensors such as biosensor field-effect transistors (BioFETs) due to their inherent simplicity, sensitivity, and scalability. The utility of BioFETs, which use electrical transduction to detect biological signals, is directly dependent upon their electrical stability in detection-relevant environments. However, BioFET device structures vary substantially, especially in electrode passivation modalities. Improper passivation of electronic components in ionic solutions can lead to excessive leakage currents and signal drift, thus presenting a hinderance to signal detectability. Here, we harness the sensitivity of nanomaterials to study the effects of various passivation strategies on the performance and stability of a biosensing platform based on aerosol-jet-printed carbon nanotube thin-film transistors. Specifically, nonpassivated devices were compared to devices passivated with photoresist (SU-8), dielectric (HfO 2 ), or photoresist + dielectric (SU-8 followed by HfO 2 ) and were evaluated primarily by initial performance metrics, large-scale device yield, and stability throughout long-duration cycling in phosphate buffered saline. We find that all three passivation conditions result in improved device performance compared to nonpassivated devices, with the photoresist + dielectric strategy providing the lowest average leakage current in solution (∼2 nA). Notably, the photoresist + dielectric strategy also results in the greatest yield of BioFET devices meeting our selected performance criteria on a wafer scale (∼90%), the highest long-term stability in solution (<0.01% change in on-current), and the best average on/off-current ratio (∼10 4 ), hysteresis (∼32 mV), and subthreshold swing (∼192 mV/decade). This passivation schema has the potential to pave the path toward a truly high-yield, stable, and robust electrical biosensing platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.