Natural fibers possess unique property densities that make them potential alternative reinforcement materials in synthetic brake pad composites. This article presents a comprehensive review for the potential and possibilities of reinforcing brake pads using natural plant-based fibers. The influential keys to designing brake pad composites are found to be thermal stability, interfacial bond of the matrix with the fiber, thermal fade, effectiveness, and recovery. Besides that, the optimization technique for manufacturing process of eco-friendly brake pads is also covered. It can be concluded that natural fibers can be used as potential materials for designing effective eco-friendly brake pad composites in the near future.
The current trend in deteriorating mechanical performance of green polymeric-based materials has made it essential for designers to establish more reliable and sustainable bio-products. Here, the mechanical performance of Jordanian lignocellulosic olive fibers in polymeric-based composites has been methodically investigated. The outcomes of different reinforcement conditions on the desired mechanical performance of the olive leaf’s lignocellulosic fibers with low-density polyethylene (LDPE) composites have been examined, including the properties of tensile strength, tensile modulus, mechanical strain, impact strength, and the intensity per composite volume. This has been accomplished to determine the optimum reinforcement condition for the desired mechanical behavior as well as to establish the performance deterioration and enhancement trends of such bio-materials in a more consistent manner. The results signify that lignocellulosic olive fibers have exhibited various enhancements in terms of mechanical performance. Both the tensile strength and modulus of elasticity have been dramatically improved at 20 wt.% fiber content. This was the most desired reinforcement condition among all considered cases. The olive fibers also possess the capability of maintaining relatively high ductility and impact strength properties, making them suitable for various industrial applications where high ductility is necessary. Thermal stability analysis using TGA and DTG has been employed to obtain accurate results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.