Vertical electrical sounding was used for assessing the suitability of the drill sites in crystalline areas within a water supply project in Nampula Province in Mozambique. Many boreholes have insufficient yield (<600 L/h). Electrical resistivity tomography (ERT) was carried out over seven boreholes with sufficient yield, and five boreholes with insufficient yield, in Rapale District, in an attempt to understand the reason for the failed boreholes. Two significant hydrogeological units were identified: the altered zone (19-220 ohm-m) with disintegrated rock fragments characterized by intermediate porosity and permeability, and the fractured zone (>420 ohm-m) with low porosity and high permeability. In addition to this, there is unfractured nonpermeable intact rock with resistivity of thousands of ohm-m. The unsuccessful boreholes were drilled over a highly resistive zone corresponding to fresh crystalline rock and a narrow altered layer with lower resistivity. Successful boreholes were drilled in places where the upper layers with lower resistivity correspond to a welldeveloped altered layer or a well-fractured basement. There are a few exceptions with boreholes drilled in seemingly favourable locations but they were nevertheless unsuccessful boreholes for unknown reasons. Furthermore, there were boreholes drilled into very resistive zones that produced successful water wells, which may be due to narrow permeable fracture zones that are not resolved by ERT. Community involvement is proposed, in choosing between alternative borehole locations based on information acquired with a scientifically based approach, including conceptual geological models and ERT. This approach could probably lower the borehole failure rate.
In continental margin basins, the hydrogeological setting is complex due to transgression/regression events that removed old sediments in the basin and formed new geologic units. Due to the geological complexity, the use of vertical electrical sounding has proven to be insufficient for groundwater explorations. The lack of understanding the geological underground has resulted in many boreholes with low yield or poor water quality. By performing electrical resistivity tomography (ERT) and induced polarization (IP) measurements in 11 villages in Mongicual district, three different layers covering the basement were identified: a weathered autochthon layer, a weathered allochthon layer (paleo-coastal dune) and eolian white sand layer. The drilling at successful boreholes penetrates formations where the resistivity value is between 220 and 770 Xm, whereas at unsuccessful boreholes the lower parts of the drilled range have resistivity values higher than 770 Xm. Also, the thickness ratio of the weathered and semi-weathered layer in the unsuccessful boreholes is less than 1/3, whereas in all successful boreholes the ration is higher than 1/2. The difference between autochthon and allochthon layers was detected by heavy minerals content in the red eolian sand layer (Tupuito formation) that increased the chargeability value. The groundwater with a conductivity higher than 2000 lS/cm is linked to the white eolian sand. The surface extension of white eolian sand layer is small to be mapped; therefore, by mapping the eolian white sand formation and the use of ERT and enhanced with IP method would lower the failure rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.