The study aims to develop a system of models and a method for optimizing the operating modes of a catalytic reforming unit using fuzzy information, which makes it possible to effectively control the reforming process of the object under study. The object of study of this work is a catalytic reforming unit that has been operating for more than half a century and is characterized by the lack of clarity of some part of the initial information. The research methods are methods of system analysis, mathematical modeling, multicriteria optimization, and expert assessments, as well as methods of theories of fuzzy set theories, which allows formalizing and using fuzzy information, as well as experimental-statistical methods. As a result of the conducted research, the following main results were obtained. Based on a systematic approach, an effective methodology has been developed for developing a system of models of interconnected plant units using various types of available information, including fuzzy information. Using the proposed method, hybrid models have been developed to determine the volume of the produced catalyzate and its quality indicators. A scheme has been constructed for combining the developed models of the main units of the catalytic reforming unit into a single package of models. The built system of models makes it possible to systematically simulate the operation of the plant under study and improve the efficiency of the facility by increasing the volume of target products produced and improving its quality indicators. A statement of the problem of multicriteria optimization is obtained, taking into account the partial fuzziness of the initial information, and a heuristic method for its solution is developed, which is based on the use of knowledge, experience, and intuition of the decision-maker. The results of modeling and optimization show the effectiveness of the proposed fuzzy approach.
The article provides an analysis of the existing methods of identifying the consumer's contribution to voltage distortion at a point of common coupling. The considered methods do not allow correctly and fairly determining the source of harmonic distortions, or they have limited application and difficulties in implementation. The paper proposes new methods for determining the source of high harmonics. The developed methods and techniques are based on the analysis of the grid operation modes with two connected consumers using compensating devices, such as reactive power compensation devices and passive harmonic filters. It is shown that the most promising method is the application of harmonic filters, which allows determining the share of the consumer's contribution to the voltage distortion. The present research is carried out using a computer simulation of the existing electrical grid, to which consumers with nonlinear electric load are connected. These methods can be implemented to assess the power quality and the shareholding of different consumers connected at the point of common coupling. Furthermore, such methods appear to be feasible, as almost every enterprise currently has such facilities in operation.
The drastic consequences of emergencies force us to look for ways to increase the stability of the device operation at overhead power transmission lines (OHPTL). It can be achieved by developing new algorithms for determining the protection operation setpoints and detecting the damage location. Fault detection at OHPTL of 10 kV and above is mainly carried out by the devices based on the measurement of emergency mode parameters. For fault detecting one should analyze the parameters of not only current and voltage at the accident time, but also of the overhead power line. Specific active resistance, specific reactance, specific active conductivity and specific reactive conductivity are used to characterize the overhead power transmission lines. As a rule, these parameters are normalized to the unit of length of the overhead line (OHL) and linear values are used in the calculations. When analyzing power lines, tabular approximate values of longitudinal and transversal parameters in equivalent circuits are used, although solving problems in an unsimplified form leads to significant refinements of the known solutions, since OHLs are influenced by external atmospheric factors (ambient temperature, soil moisture, wind force, ice formation, etc.). The paper analyzes these characteristics and evaluates the influence of the listed factors on the linear longitudinal and transversal parameters of overhead lines. A functional dependence of external factors on the distance protection actuation setpoint was obtained. A method for automatic correction of the setpoint of the intelligent protection complex and an adaptive relay protection algorithm was developed, taking into account changes in climatic factors, enabling to reduce the “dead zone” length and increase the protection sensitivity. The use of line parameters obtained from the sensors in the calculations give rise to a more accurate fault detection based on the use of remote sensing methods.
The paper presents the developed fiber-optic sensors for monitoring pressure measurement on the elements of mine supports. The sudden destruction of the support leads to the collapse of the mine workings and poses a serious threat to the life and safety of underground workers. A fiber-optic system for monitoring changes in pressures on the elements of mine supports will increase the share of mining automation and reduce the share of manual labor, as well as eliminate measurement errors associated with the human factor. Systematic monitoring of the state of the working elements of the support will allow timely tracking of their deformations caused by an increase in rock pressure on them. Implementation of the system at mining enterprises will expand the use of digital technologies in mining. Timely warning of a mine collapse threat will significantly increase the level of safe mining operations, as well as reduce the cost of supporting mine workings, since elimination of the consequences of destruction is associated with significant material costs. This work presents a developed laboratory testbench that simulates a mine working and elements of an arch support on which are installed the fiber-optic sensors connected to an automated measuring system. The developed hardware and software complex provides the processing of a light spot falling on the surface of a television matrix that is installed at the exit from the optical fiber. The results of visual processing are converted into numerical values, which are used to make a decision about the state of the considered object. In addition to automatic monitoring of the structural integrity condition of the considered object, the system is equipped with a function of a visual display for monitoring results, which makes it possible to track sharp fluctuations and bursts of pressure parameters, based on which the prediction of pre-emergency and emergency situations is performed.
A mathematical model of heating of inhomogeneous medium “TEH-sand-air” was constructed and investigated as an initial-boundary value problem for the heat equation in polar coordinate system with boundary conditions that take into account the peculiarities of thermal processes at the boundaries of the inhomogeneous medium. A solution is given to the initial-boundary problem and an algorithm is proposed for calculating the thermal characteristics of the heating process and regular temperature conditions. The study is relevant for development of a computer virtual model of the heating process of an inhomogeneous medium in order to clearly demonstrate the heating process over a short period of time, as well as to calculate the corresponding thermal characteristics based on real experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.