To promote sustainable manufacturing process, the use of coolant during machining should be controlled in order to reduce environmental pollution and health problems. Furthermore, the amount of coolant used in the conventional flooded technique is quite huge that caused an increment in production cost. It is believe that the amount of the coolant supply during machining process need to be reduced and controlled in order to solve the problems. The aim of this study is to investigate the effectiveness and the performance of a proposed automated coolant supply system with the use of PLC to control the amount of coolant supply through timing control in order to minimize the use of cutting fluid. The performance of the automated coolant system has been assessed based on surface roughness when machining Aluminium alloy and the results are compared to the one with conventional flooded coolant system. The experimental evidences show that surface roughness for 5 second on-off coolant supply is higher than conventional flooded cooling technique while the surface roughness for 10 second to 20 second on-off coolant supply is largely improved and much better than conventional flooded cooling technique. However, the roughness results for 25 second on-off coolant supply is slightly worse than 20 second on-off coolant supply but it still better than conventional flooded cooling technique. The results of this research work indicated that automated coolant supply system can replace the conventional flooded cooling technique in machining operation without any significant negative effect on the surface roughness result.
CNC machine is an industrial manufacturing machine that is used to improve quality and productivity of a product. Good tool life and surface finish of this CNC machining product are produced by applying wet cooling technique. However, this technique had affected the workpiece, tooling, health and environment. Also, there is only 10% to 15% of coolants used from the total amount of supply in the system and this lead to waste and increase productivity cost. Hence, the idea of using Programmable Logic Control (PLC) that inspired the control system of coolant supply plays an important role in developing the modern technology and industry for machining. The purpose is to develop a time-based automated coolant supply system and to test the system performance through evaluation of the roughness of the workpiece surface. The adjusted device to control the coolant supply employed a washing machine inlet control valve. Basically, the used of PLC is able to fulfil the function of the valve operation to control the flow of the coolant through the ON-OFF sequence based on time. Results from the experiment prove that better surface roughness is achieved through the application of automated coolant supply system. Hence, relationship between surface roughness and reduction in consumption of coolant in this system is also obtainable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.