Stemphylium lycopersici (Enjoji) W. Yamam was initially described from tomato and has been reported to infect different hosts worldwide. Sequence analyses of the internal transcribed spacer (ITS) regions 1 and 2, including 5.8S rDNA (ITS-5.8S rDNA) and glyceraldehyde-3-phosphate dehydrogenase (gpd) gene, random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR), as well as virulence studies were conducted to analyze 46 S. lycopersici isolates. Stemphylium lycopersici isolates used in this study were obtained from diseased tomato (Solanum lycopersicum L.), eggplant (Solanum melongena L.), pepper (Capsicum annuum L.) and lettuce (Lactuca sativa L.) from major vegetable growing regions of Malaysia, including the three states of Pahang, Johor and Selangor between 2011 and 2012. Phylogenetic analysis of a combined dataset of the ITS-5.8S rDNA and gpd regions indicated that all isolates were clustered in the sub-cluster that comprised S. lycopersici, and were distinguished from other Stemphylium species. Cluster analyses using the UPGMA method for both RAPD and ISSR markers grouped S. lycopersici isolates into three main clusters with similarity index values of 67 and 68 %. The genetic diversity data confirmed that isolates of S. lycopersici are in concordance to host plants, and not geographical origin of the isolates. All S. lycopersici isolates were pathogenic on their original host plants and showed leaf spot symptoms; however, virulence variability was observed among the isolates. In cross-inoculation assays, the representative isolates were able to cause leaf spot symptoms on eggplant, pepper, lettuce and tomato, but not on cabbage.
Rice blast disease caused by Magnaporthe grisea (Hebert) Barr [teleomorph] is one of the most devastating diseases in rice plantation areas. Silicon is considered as a useful element for a large variety of plants. Rice variety MR219 was grown in the glasshouse to investigate the function of silicon in conferring resistance against blast. Silica gel was applied to soil while sodium silicate was used as foliar spray at the rates of 0, 60, 120, 180 g/5 kg soil and 0, 1, 2, 3 ml/l respectively. The treatments were arranged in a completely randomized design. Disease severity and silicon content of leaves were compared between the non-amended controls and rice plants receiving the different rates and sources of silicon. Silicon at all rates of application significantly (α = 0.05) reduced the severity of disease with highest reduction (75%) recorded in treatments receiving 120 g of silica gel. SEM/EDX observations demonstrated a significant difference in weight concentration of silicon in silica cells on the leaf epidermis between silicon treated (25.79%) and non treated plants (7.87%) indicating that Si-fertilization resulted in higher deposition of Si in silica cells in comparison with non-treated plants. Application of silicon also led to a significant increase in Si contents of leaves. Contrast procedures indicated higher efficiency of silica gel in comparison to sodium silicate in almost all parameters assessed. The results suggest that mitigated levels of disease were associated with silicification and fortification of leaf epidermal cells through silicon fertilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.