This study analyzes involved trends in stream flow and precipitation data at monthly, seasonal and annual timescales observed at six precipitation and four stream flow stations of Tampa Bay using non-parametric Mann–Kendall (MK) and discrete wavelet transform (DWT) methods. The MK test and sequential MK analysis were applied to different combinations of DWT after removing the effect of significant lag-1 serial correlation to calculate components responsible for trend of the time series. Also, the sequential MK test was used to find the starting point of changes in annual time series. The results showed that negative trend is prevalent in the case study; generally, short-term periods were important in the involved trend at original time series. Thus, the precipitation data at three scales showed short-term periods of 2 months, 6 months and 2 years in monthly, seasonal and annual scales, respectively. In the greatest stream-flow time series at three timescales, wavelet-based detail at level 2 plus the approximations time series was conceded as the dominant periodic component. Finally, the results of Sen's trend analysis, applied to the original annual time series, also confirmed the results of the proposed wavelet-based MK test in most cases.
The present study integrates co-kriging as spatial estimator and self-organizing map (SOM) as clustering technique to identify spatially homogeneous clusters of groundwater quality data and to choose the most effective input data for feed-forward neural network (FFNN) model to simulate electrical conductivity (EC) and total dissolved solids (TDS) of groundwater. The methodology is presented in three stages. In the first stage, a geostatistics approach of co-kriging is used to estimate groundwater quality parameters at locations where the groundwater levels are measured. In stage two, a SOM clustering technique is used to identify spatially homogeneous clusters of groundwater quality data. The dominant input data, selected by spatial clustering and mutual information are then imposed into the FFNN model for one-step-ahead predictions of groundwater quality parameters at stage three. The performance of the newly proposed model is compared to a conventional linear forecasting method of multiple linear regression (MLR). The results suggest that the proposed model decreases dimensionality of the input layer and consequently the complexity of the FFNN model with acceptable efficiency in spatiotemporal simulation of groundwater quality parameters. The application of FFNN for modeling EC and TDS parameters increases the accuracy of predictions respectively up to 84.5% and 17% on average with regard to the MLR model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.