Inhalation therapy involving a pressurized metered-dose inhaler (pMDI) is one of the most commonly used and effective treatment methods for patients with asthma. The purpose of this study was to develop a computational fluid dynamics (CFD) model to characterize aerosol flow issued from a pMDI into a simulated mouth–throat geometry. The effects of air flow rate and cone angle were analyzed in detail. The behaviour of the multiphase flow initiated at the inhaler actuation nozzle and extended through the mouth–throat airway was simulated based on the Eulerian-Lagrangian discrete phase model, with the k-ω model applied for turbulency. We validated our model against published experimental measurements and cover the hydrodynamic aspect of the study. The recirculation we observed at the 90° bend inside the mouth–throat airway resulted in the selective retention of larger diameter particles, and the fluid flow patterns were correlated with drug deposition behaviour. Enhancing air flow rates up to three times reduced the aerodynamic particle diameters to 20%. We also observed that, as cone angle increased, mouth deposition increased; an 8° cone angle was the best angle for the lowest mouth–throat deposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.