The analog AC-voltmeter usually can only measure the ideal-sinusoid voltage with narrow frequency range. Meanwhile, in fact the grid voltage is often not in the form of an ideal sinusoidal. To be able to measure a non-sinusoidal AC voltage with a wide range of frequency, a true-RMS voltmeter is needed. The research designed a true RMS measuring system using an ATmega 328P microcontroller. The input voltage is converted to pulse using Schmit triger and fed to the microcontroller’s external interrupt pin to calculate the input signal frequency. Meanwhile the microcontroller’s ADC sampled the input signal with a frequency of 128 times the signal’s frequency. RMS voltage calculations are performed using arithmetic operations for 16 and 32 bit integer variables. The test results show that the system can measure voltages with zero errors from 100 to 275 volts with a frequency of 50 Hz. The system can also measure voltages with zero errors at 220 volt with frequencies from 40 Hz to 150 Hz. However, this system can still be used to measure voltages ranging from 25 volts to 300 volts at frequencies from 35 Hz to 195 Hz with an average error of 0.21%. During RMS voltage calculation, the microcontroller’s CPU usage was 13.35%, so that this system can be further developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.